已知兩非零向量
a
=(a1,b1)
,
b
=(a2b2)
,其中a1,a2,b1,b2均為實(shí)數(shù),集合A={x|a1x+b1≥0},集合B={x|a2x+b2≥0},則“
a
b
”是“A=B”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)向量平行以及充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:若A=B,則不等式a1x+b1≥0和a2x+b2≥0的解集相同,
則a1a2>0,且方程a1x+b1=0和a2x+b2=0同解,
a1
a2
=
b1
b2
,則
a
b
成立,即必要性成立,
a
b
,則
a1
a2
=
b1
b2
,當(dāng)a1a2<0時(shí),滿足
a
b
,但集合A={x|a1x+b1≥0},集合B={x|a2x+b2≥0}的解集不同,解集A=B不成立,故充分性不成立,
故“
a
b
”是“A=B”的必要不充分條件,
故選:B.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)向量平行和二元一次不等式表示平面區(qū)域的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R}
(1)求A∩B=[1,3],求實(shí)數(shù)m的值.
(2)若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)公式為an=n2+n+1,則273是這個(gè)數(shù)列的第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(sinx,cosx),
b
=(sinx,-cosx),
c
=(-cosx,-sinx),x∈R,函數(shù)f(x)=
a
•(
b
-
c
).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(
α
2
)=
2
2
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,an=96,Sn=189,q=2,求n和a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x-
3
y-6=0在y軸上的截距為( 。
A、6
B、-2
3
C、-6
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程y=x2-5x+6與方程x2+(y-2)2=4,求交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)(b-c)(b+c)2+(c-a)(c+a)2+(a-b)(a+b)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x>0,x+
4
x
≥4:命題q:?x0∈R+,2x0=
1
2
,則下列判斷正確的是( 。
A、p是假命題
B、q是真命題
C、p∧(¬q)是真命題
D、(¬p)∧q是真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案