7.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中點(diǎn).
(1)求證:PB∥平面AEC
(2)求證:PB⊥AC.

分析 (1)連接BD交AC于點(diǎn)O,則OE∥PB,由此能證明PB∥平面AEC.
(2)設(shè)AD中點(diǎn)為F,連接BF、PF,推導(dǎo)出AC⊥BF,PF⊥AD,從而PF⊥AC,由此能證明AC⊥PB.

解答 證明:(1)連接BD交AC于點(diǎn)O,
∵ABCD是矩形,∴O是BD中點(diǎn),…(1分)
又∵E是PD中點(diǎn),
∴OE是△DBP的中位線,
∴OE∥PB,…(2分)
∵OE?平面AEC,PB?平面AEC,…(4分)
∴PB∥平面AEC. …(5分)
(2)設(shè)AD中點(diǎn)為F,連接BF、PF.
∵PA=PD=AB=a,
∴AD=BC=$\sqrt{2}a$,AF=$\frac{\sqrt{2}}{2}a$,∴$\frac{AB}{AF}=\frac{BC}{AB}=\sqrt{2}$.
△△ABC∽△FAB,∴AC⊥BF,…(8分)
又PA=PD,F(xiàn)是AD的中點(diǎn),∴PF⊥AD,…(9分)
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PF?平面PAD,
∴PF⊥面ABCD,…(10分)
∵AC?平面ABCD,∴PF⊥AC,
∵PF∩BF=F,…(11分)
∴AC⊥平面PBF,∵PB?平面ABCD,
∴AC⊥PB.…(12分)

點(diǎn)評 本題考查線面平行的證明,考查線線垂直的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知O為坐標(biāo)原點(diǎn),A,B的坐標(biāo)分別是(4,0),(0,3),則△AOB外接圓的方程為x2+y2-4x-3y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,點(diǎn)($\sqrt{2}$,$\sqrt{3}$)在C上
(Ⅰ)求C的方程;
(Ⅱ)直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M,證明:OM的斜率與直線l的斜率的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“xy≠6”是“x≠2或y≠3”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果二面角α-L-β的大小是60°,線段AB在α內(nèi),AB與L所成的角為60°,則AB與平面β所成角的正切值是$\frac{{3\sqrt{7}}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.與雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$共漸近線且過點(diǎn)$(2\sqrt{3},-3)$的雙曲線方程$\frac{y^2}{{\frac{9}{4}}}-\frac{x^2}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3+a5+a7=$\frac{π}{4}$則sinS9的值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.集合{1,2,3}的子集個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某學(xué)校采用系統(tǒng)抽樣方法,從該校高一年級全體800名學(xué)生中抽50名學(xué)生做視力檢查,現(xiàn)將800名學(xué)生從1到800進(jìn)行編號,依從小到大的編號順序平均分成50個(gè)小組,組號依次為1,2,…,50.已知在第1小組隨機(jī)抽到的號碼是m,第8小組抽到的號碼是9m,則第6小組抽到的號碼是94.

查看答案和解析>>

同步練習(xí)冊答案