若函數(shù)f(x)=-cos2x+數(shù)學(xué)公式(x∈R),則f(x)是


  1. A.
    最小正周期為數(shù)學(xué)公式的奇函數(shù)
  2. B.
    最小正周期為π的奇函數(shù)
  3. C.
    最小正周期為數(shù)學(xué)公式的偶函數(shù)
  4. D.
    最小正周期為π的偶函數(shù)
D
分析:把函數(shù)解析式第一項(xiàng)利用二倍角的余弦函數(shù)公式化簡(jiǎn),合并整理為一個(gè)角的余弦函數(shù),根據(jù)余弦函數(shù)為偶函數(shù),同時(shí)找出ω的值,代入周期公式T=求出函數(shù)的最小正周期,即可得到正確的選項(xiàng).
解答:函數(shù)f(x)=-cos2x+=-+=-cos2x,
∵ω=2,∴T==π,
又cos2x為偶函數(shù),
則函數(shù)為最小正周期為π的偶函數(shù).
故選D
點(diǎn)評(píng):此題考查了三角函數(shù)的周期性及其求法,涉及的知識(shí)有:二倍角的余弦函數(shù)公式,周期公式,以及余弦函數(shù)的奇偶性,其中利用三角函數(shù)的恒等變形把函數(shù)解析式化為一個(gè)角的余弦函數(shù)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=2-x的反函數(shù)是y=-log2x;
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
其中所有正確命題的序號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)唯一的一個(gè)零點(diǎn)同時(shí)在區(qū)間(0,16),(0,8),(0,6),(2,4)內(nèi),那么下列命題中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•濟(jì)南一模)已知函數(shù)f(x)=x3-bx2+2cx的導(dǎo)函數(shù)的圖象關(guān)于直線x=2對(duì)稱.
(1)求b的值;
(2)若函數(shù)f(x)無極值求c的取值范圍;
(3)若f(x)在x=t處取得極小值,記此極小值為g(t),求g(t)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(x3-6x2+3x+a),
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)在(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)有三個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)定義:如果曲線C上存在不同點(diǎn)的兩點(diǎn)A(x1,y1 ),B(x2,y2 ),過AB的中點(diǎn)且垂直于x軸的直線交曲線C于點(diǎn)M,使得直線AB與曲線C在M處的切線平行,則稱曲線C有“平衡切線”.
試判斷函數(shù)G(x)=[f'(x)-f(x)]•e-x+ex的圖象是否有“平衡切線”,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對(duì)定義域R內(nèi)的任意x都有f(x)=f(2-x),且當(dāng)x≠1時(shí)其導(dǎo)函數(shù)f′(x) 滿足xf′(x)>f′(x),若1<a<2,則(  )
A、f(2a)<f(2)<f(log2a)B、f(log2a)<f(2)<f(2aC、f(2)<f(log2a)<f(2aD、f(log2a)<f(2a)<f(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案