【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(﹣x)+f(x+3)=0;當(dāng)x∈(0,3)時(shí),f(x)= ,其中e是自然對(duì)數(shù)的底數(shù),且e≈2.72,則方程6f(x)﹣x=0在[﹣9,9]上的解的個(gè)數(shù)為( )
A.4
B.5
C.6
D.7
【答案】C
【解析】解:當(dāng)x>0時(shí),f(﹣x)+f(x+3)=0,∴f(x+3)=﹣f(﹣x),
∵f(x)是奇函數(shù),
∴f(x)的周期為3,
當(dāng)x∈(0,3)時(shí),f(x)= ,∴f′(x)= ,
∴函數(shù)在(0,e)上單調(diào)遞增,在(e,3)上單調(diào)遞減,
在[0,9]上作出y=f(x)的圖象,作出y= 的圖象,如圖所示
∴在[0,9]上,有3個(gè)交點(diǎn),由對(duì)稱性,可得方程6f(x)﹣x=0在[﹣9,9]上的解的個(gè)數(shù)為6,
故選:C.
確定f(x)的周期為3,函數(shù)在(0,e)上單調(diào)遞增,在(e,3)上單調(diào)遞減,在[0,9]上作出y=f(x)的圖象,作出y= 的圖象,即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),武漢市出現(xiàn)了非常嚴(yán)重的霧霾天氣,而燃放煙花爆竹會(huì)加重霧霾,是否應(yīng)該全面禁放煙花爆竹已成為人們議論的一個(gè)話題.武漢市環(huán)保部門就是否贊成禁放煙花爆竹,對(duì)400位老年人和中青年市民進(jìn)行了隨機(jī)問卷調(diào)查,結(jié)果如下表:
贊成禁放 | 不贊成禁放 | 合計(jì) | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合計(jì) | 140 | 260 | 400 |
附:K2=
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
(1)有多大的把握認(rèn)為“是否贊成禁放煙花爆竹”與“年齡結(jié)構(gòu)”有關(guān)?請(qǐng)說明理由;
(2)從上述不贊成禁放煙花爆竹的市民中按年齡結(jié)構(gòu)分層抽樣出13人,再?gòu)倪@13人中隨機(jī)的挑選2人,了解他們春節(jié)期間在煙花爆竹上消費(fèi)的情況.假設(shè)一位老年人花費(fèi)500元,一位中青年人花費(fèi)1000元,用X表示它們?cè)跓熁ū裆舷M(fèi)的總費(fèi)用,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 + =1(a>b>0)的左焦點(diǎn)為F(﹣c,0),右頂點(diǎn)為A,點(diǎn)E的坐標(biāo)為(0,c),△EFA的面積為 .(14分)
(I)求橢圓的離心率;
(II)設(shè)點(diǎn)Q在線段AE上,|FQ|= c,延長(zhǎng)線段FQ與橢圓交于點(diǎn)P,點(diǎn)M,N在x軸上,PM∥QN,且直線PM與直線QN間的距離為c,四邊形PQNM的面積為3c.
(i)求直線FP的斜率;
(ii)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A. “若x>1,則2x>1”的否命題為真命題
B. “若cosβ=1,則sinβ=0”的逆命題是真命題
C. “若平面向量a,b共線,則a,b方向相同”的逆否命題為假命題
D. 命題“若x>1,則x>a”的逆命題為真命題,則a>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項(xiàng)和Sn
(2)設(shè)bn=anan+1 , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,橢圓的焦距為直徑的圓與直線相切(為常數(shù)).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,若橢圓的左、右焦點(diǎn)分別為,過作直線與橢圓分別交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:
則下列結(jié)論中正確的是 ( )
A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些
B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些
C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好
D. 無(wú)法判斷誰(shuí)生產(chǎn)的產(chǎn)品質(zhì)量好一些
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a∈R),給出兩個(gè)命題:p:函數(shù)f(x)的值域不可能是(0,+∞);q:函數(shù)f(x)的單調(diào)遞增區(qū)間可以是(-∞,-2].那么下列命題為真命題的是( )
A. p∧q B. p∨(q)
C. (p)∧q D. (p)∧(q)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com