【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點(diǎn),BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.
B.
C.
D.

【答案】B
【解析】解:以C為原點(diǎn),CA為x軸,CB為y軸,CC1為z軸,建立空間直角坐標(biāo)系,
設(shè)BC=AC=CC1=2,
則C(0,0,0),N(1,0,2),A(2,0,0),M(1,1,2),
=(1,0,2), =(﹣1,1,2),
設(shè)CN與AM所成角為θ,
則cosθ= = =
∴CN與AM所成角的余弦值為
故選:B.

【考點(diǎn)精析】利用異面直線及其所成的角對(duì)題目進(jìn)行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-1:幾何證明選講]
如圖,△OAB是等腰三角形,∠AOB=120°.以O(shè)為圓心, OA為半徑作圓.

(1)證明:直線A與⊙O相切;
(2)點(diǎn)C,D在⊙O上,且A,B,C,D四點(diǎn)共圓,證明:AB∥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體ABCD中,過棱AB的上一點(diǎn)E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點(diǎn)F,G,H

(1)求證:截面EFGH為平行四邊形

(2)若P、Q在線段BD、AC上,,且P、F不重合,證明:PQ截面EFGH

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ax2+bx+ca≠0),滿足f(0)=2,fx+1)﹣fx)=2x﹣1

(1)求函數(shù)fx)的解析式;

(2)當(dāng)x∈[﹣1,2]時(shí),求函數(shù)的最大值和最小值.

(3)若函數(shù)gx)=fx)﹣mx的兩個(gè)零點(diǎn)分別在區(qū)間(﹣1,2)和(2,4)內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求證:AB⊥PC;
(2)求側(cè)面BPC與側(cè)面DPC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)如果滿足:對(duì)任意,存在常數(shù)都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的一個(gè)上界已知函數(shù)

(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以5為上界的有界函數(shù),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的一個(gè)上界.已知函數(shù), .

(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案