若a,b∈R,則a>b>0是a2>b2


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
A
試題分析:由不等式的性質(zhì),由a>b>0可推出a2>b2,但,由a2>b2無(wú)法推出a>b>0,如a,b小于0時(shí),故選a。
考點(diǎn):本題主要考查不等式的性質(zhì),充要條件的概念。
點(diǎn)評(píng):簡(jiǎn)單題,充要條件的判斷,可利用定義法,也可利用“集合關(guān)系法”。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
、
b
c
,下列敘述正確的個(gè)數(shù)是( 。
(1)若k∈R,且k
b
=
0
,則k=0或
b
=
0
;
(2)若
a
b
=
0
,則
a
=
0
b
=
0
;
(3)若不平行的兩個(gè)非零向量
a
b
滿足|
a
|=|
b
|
,則(
a
+
b
)(
a
-
b
)=0

(4)若
a
,
b
平行,則
a
b
=|
a
|•|
b
|
;
(5)若
a
b
=
a
c
,且
a
0
,則
b
=
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列使用類(lèi)比推理所得結(jié)論正確的序號(hào)是
(4)
(4)

(1)直線a,b,c,若a∥b,b∥c,則a∥c.類(lèi)推出:向量
a
,
b
,
c
,若
a
b
,
b
c
a
c

(2)同一平面內(nèi),三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b.類(lèi)推出:空間中,三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b.
(3)任意a,b∈R,a-b>0則a>b.類(lèi)比出:任意a,b∈C,a-b>0則a>b.
(4)以點(diǎn)(0,0)為圓心,r為半徑的圓的方程是x2+y2=r2.類(lèi)推出:以點(diǎn)(0,0,0)為球心,r為半徑的球的方程是x2+y2+z2=r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

若a,b∈R,則a>b>0是a2>b2的(   )

A.充分不必要條件                        B.必要不充分條件

C.充要條件                             D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)推理與證明專(zhuān)項(xiàng)訓(xùn)練(河北) 題型:選擇題

給出下面類(lèi)比推理命題(其中R為實(shí)數(shù)集,C為復(fù)數(shù)集):

①“若a,b∈R,則a-b=0⇒a=b”類(lèi)比推出“若a,b∈C,則a-b=0⇒a=b”;

②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類(lèi)比推出“若a,b,c,d∈C,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”;

③“若a,b∈R,則a-b>0⇒a>b” 類(lèi)比推出“若a,b∈C,則a-b>0⇒a>b”;

④“若a,b∈R,則a·b=0⇒a=0或b=0”.類(lèi)比推出“若a,b∈C,則a·b=0⇒a=0或b=0”.

其中類(lèi)比結(jié)論正確的個(gè)數(shù)是(  )

A.0                       B.1

C.2                        D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年浙江省杭州市學(xué)軍中學(xué)高三第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

給出下面類(lèi)比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集)
①“若a,b∈R,則a-b=0⇒a=b”類(lèi)比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”,類(lèi)比推出“若a,b,c,d∈Q,則”;
③“若a,b∈R,則a-b>0⇒a>b”類(lèi)比推出“若a,b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”類(lèi)比推出“若x∈C,則|z|<1⇒-1<z<1
其中類(lèi)比結(jié)論正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案