已知函數(shù)f(x)=
f1(x),x∈[0,
1
2
)
f2(x),x∈[
1
2
,1]
,其中f1(x)=-2(x-
1
2
2+1,f2(x)=-2x+2.x0∈[0,
1
2
),x1=f(x0),f(x1)=x0,求x0的值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象關于直線x+y=0對稱,則y=f(x)的反函數(shù)是( 。
A、y=g(x)B、y=g(-x)C、y=-g(x)D、y=-g(-x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,設S0=0,Sn=a1+a2+a3+…+an,其中ak=
k,Sk-1<k
-k,Sk-1≥k
,1≤k≤n,k,n∈N*,當n≤14時,使Sn=0的n的最大值為 (  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=sinx-|sinx|的性質(zhì),
①f(x)是以2π為周期的周期函數(shù)    
②f(x)的單調(diào)遞增區(qū)間為[2kπ-
π
2
,2kπ],k∈Z
③f(x)的值域為[-2,2]
④f(x)取最小值的x的取值集合為{x|x=2kπ+
π
2
,k∈Z}
其中說法正確的序號有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

上網(wǎng)獲取信息已經(jīng)成為人們?nèi)粘I畹闹匾M成部分.因特網(wǎng)服務公司(Internet Service Provider)的任務就是負責將用戶的計算機接入因特網(wǎng),同時收取一定的費用.某同學要把自己的計算機接入因特網(wǎng).現(xiàn)有兩家ISP公司可供選擇.公司A每小時收費1.5元;公司B的收費原則如圖所示,即在用戶上網(wǎng)的第1小時內(nèi)收費1.7,第2小時內(nèi)收費1.6元,以后每小時減少0.1元(若用戶一次上網(wǎng)時間超過17小時,按17小時計算).假設一次上網(wǎng)時間總小于17小時.那么,一次上網(wǎng)在多長時間以內(nèi)能夠保證選擇公司A比選擇公司B所需費用少?請寫出其中的不等關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司生產(chǎn)某種產(chǎn)品的固定成本為150萬元,而每生產(chǎn)x千件產(chǎn)品每年需另增加的可變成本為C(x)(單位:萬元),且C(x)=
1
3
x2+10x(0<x<80,x∈N*)
51x+
10000
x
-1450(x≥80,x∈N*)
,每件產(chǎn)品的售價為500元,且假定該公司生產(chǎn)的產(chǎn)品能全部售出.
(Ⅰ)寫出年利潤L(x)關于年產(chǎn)量x(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該公司所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐的正視圖和側視圖都是邊長為4的等邊三角形,則此圓錐的表面積是( 。
A、4π
B、8π
C、
3
D、12π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α為平面,a、b為兩條不同的直線,則下列敘述正確的是( 。
A、若a∥α,b∥α,則a∥bB、若a⊥α,a∥b,則b⊥αC、若a⊥α,a⊥b,則b∥αD、若a∥α,a⊥b,則b⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示程序框圖,運行相應的程序,則輸出的結果是(  )
A、-
3
B、-
3
2
C、
3
D、
3
2

查看答案和解析>>

同步練習冊答案