給定橢圓C:+=1(a>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為.
(1)求橢圓C的方程和其“準(zhǔn)圓”的方程.
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線l1,l2使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),且l1,l2分別交其“準(zhǔn)圓”于點(diǎn)M,N.
①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),求l1,l2的方程;
②求證:|MN|為定值.
(1) +y2=1   x2+y2=4
(2) ①y=x+2,y=-x+2  ②見解析
(1)∵c=,a=,∴b=1.
∴橢圓方程為+y2=1,
準(zhǔn)圓方程為x2+y2=4.
(2)①因?yàn)闇?zhǔn)圓x2+y2=4與y軸正半軸的交點(diǎn)為P(0,2),
設(shè)過(guò)點(diǎn)P(0,2)且與橢圓有一個(gè)公共點(diǎn)的直線為y=kx+2,所以由消去y,
得(1+3k2)x2+12kx+9=0.
因?yàn)闄E圓與y=kx+2只有一個(gè)公共點(diǎn),
所以Δ=144k2-4×9(1+3k2)=0,解得k=±1.
所以l1,l2的方程分別為y=x+2,y=-x+2.
②(ⅰ)當(dāng)l1,l2中有一條無(wú)斜率時(shí),不妨設(shè)l1無(wú)斜率,
因?yàn)閘1與橢圓只有一個(gè)公共點(diǎn),
則其方程為x=±.
當(dāng)l1方程為x=時(shí),
此時(shí)l1與準(zhǔn)圓交于點(diǎn)(,1),(,-1),
此時(shí)經(jīng)過(guò)點(diǎn)(,1)(或(,-1))且與橢圓只有一個(gè)公共點(diǎn)的直線是y=1(或y=-1),
即l2為y=1(或y=-1),顯然直線l1,l2垂直;
同理可證l1方程為x=-時(shí),直線l1,l2垂直.
(ⅱ)當(dāng)l1,l2都有斜率時(shí),設(shè)點(diǎn)P(x0,y0),
其中+=4.
設(shè)經(jīng)過(guò)點(diǎn)P(x0,y0)與橢圓只有一個(gè)公共點(diǎn)的直線為y=t(x-x0)+y0,
消去y,
得(1+3t2)x2+6t(y0-tx0)x+3(y0-tx0)2-3=0.
由Δ=0化簡(jiǎn)整理得:(3-)t2+2x0y0t+1-=0.
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824040429012351.png" style="vertical-align:middle;" />+=4,
所以有(3-)t2+2x0y0t+(-3)=0.
設(shè)l1,l2的斜率分別為t1,t2,
因?yàn)閘1,l2與橢圓只有一個(gè)公共點(diǎn),
所以t1,t2滿足上述方程(3-)t2+2x0y0t+(-3)=0,
所以t1·t2=-1,即l1,l2垂直.
綜合(ⅰ)(ⅱ)知:因?yàn)閘1,l2經(jīng)過(guò)點(diǎn)P(x0,y0),
又分別交其準(zhǔn)圓于點(diǎn)M,N,且l1,l2垂直,
所以線段MN為準(zhǔn)圓x2+y2=4的直徑,
所以|MN|=4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線與拋物線交于兩點(diǎn)A、B,如果弦的長(zhǎng)度.
⑴求的值;
⑵求證:(O為原點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)的焦距為,且過(guò)點(diǎn)(,),右焦點(diǎn)為.設(shè)上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為,線段的中垂線交橢圓兩點(diǎn).

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,設(shè)左頂點(diǎn)為A,上頂點(diǎn)為B且,如圖.

(1)求橢圓的方程;
(2)若,過(guò)的直線交橢圓于兩點(diǎn),試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點(diǎn),c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線與直線分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0),左、右兩個(gè)焦點(diǎn)分別為F1,F2,上頂點(diǎn)A(0,b),△AF1F2為正三角形且周長(zhǎng)為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(2)O為坐標(biāo)原點(diǎn),P是直線F1A上的一個(gè)動(dòng)點(diǎn),求|PF2|+|PO|的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在直角坐標(biāo)系xOy中,點(diǎn)P到拋物線C:y2=2px(p>0)的準(zhǔn)線的距離為.點(diǎn)M(t,1)是C上的定點(diǎn),A,B是C上的兩動(dòng)點(diǎn),且線段AB被直線OM平分.

(1)求p,t的值;
(2)求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過(guò)點(diǎn)P,離心率是.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過(guò)點(diǎn)E (-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值等于8,則動(dòng)點(diǎn)M的軌跡方程為 (    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案