若正四面體
S—ABC的面
ABC內(nèi)有一動點
P分別到平面
SAB、平面
SBC、平面
SAC的距離成等差數(shù)列,則點
P的軌跡是( )
A.一條線段 | B.一個點 |
C.一段圓弧 | D.拋物線的一段 |
設點
到平面
,平面
和平面
的距離分別是
,則
。因為正四面體的體積以及平面
,平面
和平面
的面積為定值且相等,所以
為定值。因為
成等差數(shù)列,所以
,則
為定值,即
到平面
的距離不變,而
點在面
內(nèi),所以點
的軌跡是平行BC的線段,故選A.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
在直角坐標系中
中,曲線C
1的參數(shù)方程為
(t為參數(shù));在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C
2的極坐標方程為
,曲線C
1與C
2交于A、B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
直線
被曲線
(
為參數(shù))所截得的弦長為_________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
選修4-4:坐標系與參數(shù)方程
已知點
,參數(shù)
,點Q在曲線C:
上
(1)求點
P的軌跡方程和曲線
C的直角坐標方程;
(2)求點
P與點
Q之間距離的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分,選修4-4:極坐標與參數(shù)方程)
已知圓C的極坐標方程是
,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線
的參數(shù)方程是
(t是參數(shù))。
若直線
與圓C相切,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知點
P到兩個定點
M(-1,0)、
N(1,0)距離的比為
,點
N到直線
PM的距離為1,求直線
PN的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)選修4-4 :坐標系與參數(shù)方程
在直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為
cos(
)=1,M,N分別為C與x軸,y軸的交點。
(1)寫出C的直角坐標方程,并求M,N的極坐標;
(2)設MN的中點為P,求直線OP的極坐標方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)(1)
(本小題滿分7分)選修4-2:矩陣與變換
已知曲線
繞原點逆時針旋轉(zhuǎn)
后可得到曲線
,
(I)求由曲線
變換到曲線
對應的矩陣
;
.(II)若矩陣
,求曲線
依次經(jīng)過矩陣
對應的變換
變換后得到的曲線方程.
(2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程
已知直線
的參數(shù)方程為
(
t為參數(shù)),曲線
C的極坐標方程為
(1)求曲線
C的直角坐標方程; (2)求直線
被曲線
C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
選修4-4:坐標系與參數(shù)方程
已知曲線
(
為參數(shù)).
(1)將
的方程化為普通方程;
(2)若點
是曲線
上的動點,求
的取值范圍.
查看答案和解析>>