【題目】已知數(shù)列{an}的前n項和為Sn , 滿足 ,且a1=3. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證: .
【答案】解:(Ⅰ)數(shù)列{an}的前n項和為Sn , 且 , ∴Sn﹣Sn﹣1=2an﹣1+1,(n≥2,n∈N*),
即an=2an﹣1+1(n≥2,n∈N*),
∴an+1=2(an﹣1+1),
∴數(shù)列{an+1}是等比數(shù)列;
又a1+1=3+1=4,
∴ ,
∴ ;
(Ⅱ)由(Ⅰ)知, ,
∴{ }是首項為 ,公比為 的等比數(shù)列,
因此
=
.
【解析】(Ⅰ)由數(shù)列{an}的前n項和與通項公式的定義,得出an=2an﹣1+1(n≥2,n∈N*),從而得出數(shù)列{an+1}是等比數(shù)列,由此求出{an}的通項公式;(Ⅱ)由(Ⅰ)寫出數(shù)列{an+1}的通項公式,從而得出{ }是等比數(shù)列,求出其前n項和,即可證明不等式成立.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的通項公式的相關(guān)知識可以得到問題的答案,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)是否存在過點(diǎn)的直線交橢圓與不同的兩點(diǎn),且滿足 (其中為坐標(biāo)原點(diǎn))。若存在,求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點(diǎn),則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是( )
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)賣場對市民進(jìn)行國產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取100名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如下:
分組(歲) | 頻數(shù) |
[25,30) | x |
[30,35) | y |
[35,40) | 35 |
[40,45) | 30 |
[45,50] | 10 |
合計 | 100 |
(Ⅰ)求頻率分布表中x、y的值,并補(bǔ)全頻率分布直方圖;
(Ⅱ)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加國產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這20人重隨機(jī)抽取2人各贈送精美禮品一份,設(shè)這2名市民中年齡在[35,40)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是我國古代的數(shù)學(xué)著作,其卷下中有類似如下的問題:“今有方物一束,外周一匝有四十枚,問積幾何?”如右圖是解決該問 題的程序框圖,若設(shè)每層外周枚數(shù)為a,則輸出的結(jié)果為( )
A.81
B.74
C.121
D.169
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) . (Ⅰ)證明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 的左右焦點(diǎn)分別為F1 , F2 , 過右焦點(diǎn)F2的直線交雙曲線于A,B兩點(diǎn),連接AF1 , BF1 . 若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( )
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題的敘述:
①若p:x>0,x2﹣x+1>0,則¬p:x0≤0,x02﹣x0+1≤0;
②三角形三邊的比是3:5:7,則最大內(nèi)角為 π;
③若 = ,則 = ;
④ac2<bc2是a<b的充分不必要條件,
其中真命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com