已知圓O:x2+y2=25,點(diǎn)A(-4,0)B(4,0),一列拋物線以圓O的切線為準(zhǔn)線且過點(diǎn)A和B,則這列拋物線的焦點(diǎn)的軌跡方程是(  )
A、
x2
25
+
y2
16
=1(x≠0)
B、
x2
25
+
y2
16
=1(y≠0)
C、
x2
25
+
y2
9
=1(x≠0)
D、
x2
25
+
y2
9
=1(y≠0)
分析:設(shè)出切點(diǎn)與切線方程,可得a2+b2=25,設(shè)出焦點(diǎn)坐標(biāo),根據(jù)拋物線的定義求得點(diǎn)A,B到準(zhǔn)線的距離等于其到焦點(diǎn)的距離,然后兩式平方后分別相加和相減,聯(lián)立后求得x和y的關(guān)系式.
解答:解:設(shè)切點(diǎn)為(a,b),∴a2+b2=25,則切線為:ax+by-25=0
設(shè)焦點(diǎn)(x,y),由拋物線定義可得:
(x-4)2+y2
=
|4a-25|
5
…①,
(x+4)2+y2
=
|4a+25|
5
…②,
分別平方相加得:32a2+1250=50x2+50y2+800,相減得a=x.
所以可得:
x2
25
+
y2
9
=1

依題意焦點(diǎn)不能與A,B共線∴y≠0.
所以這列拋物線的焦點(diǎn)的軌跡方程是
x2
25
+
y2
9
=1(y≠0)

故選D.
點(diǎn)評(píng):本題主要考查了拋物線的定義與橢圓的標(biāo)準(zhǔn)方程,考查了學(xué)生數(shù)形結(jié)合的思想及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案