精英家教網 > 高中數學 > 題目詳情

【題目】關于x的方程4x﹣m2x+1+4=0有實數根,則m的取值范圍( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

【答案】D
【解析】解:∵關于x的方程4x﹣m2x+1+4=0有實數根,

∴m= (2x+42x)成立,

∵2x+42x≥2 =4,∴m≥2,

所以答案是:D.

【考點精析】通過靈活運用函數的零點與方程根的關系,掌握二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設y=f(x)是二次函數,方程f(x)=0有兩個相等的實根,且f′(x)=2x﹣2.
(1)求y=f(x)的表達式;
(2)求y=f(x)的圖象與兩坐標軸所圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)=ax2﹣2ax﹣1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設f(x)=
(1)求a,b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)
(1)若直線x﹣y﹣2=0過拋物線C的焦點,求拋物線C的方程,并求出準線方程;
(2)設p=2,A,B是C上異于坐標原點O的兩個動點,滿足OA⊥OB,△ABO的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一名大學生嘗試開家小“網店”銷售一種學習用品,經測算每售出1盒蓋產品獲利30元,未售出的商品每盒虧損10元.根據統(tǒng)計資料,得到該商品的月需求量的頻率分布直方圖(如圖所示),該同學為此購進180盒該產品,以x(單位:盒,100≤x≤200)表示一個月內的市場需求量,y(單位:元)表示一個月內經銷該產品的利潤.

(1)根據直方圖估計這個月內市場需求量x的平均數;
(2)將y表示為x的函數;
(3)根據直方圖估計這個月利潤不少于3800元的概率(用頻率近似概率).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量
(1)求函數f(x)的解析式,并求函數f(x)的單調增區(qū)間;
(2)畫出函數f(x)在[0,2π]上的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=|ax﹣1|+|x+2|,(a>0).
(Ⅰ)若a=1,時,解不等式 f(x)≤5;
(Ⅱ)若f(x)≥2,求a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數列,并求{an}的通項公式an;
(2)數列{bn}滿足bn=(3n﹣1) an , 求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= [cos(2x+ )+4sinxcosx]+1,x∈R.
(1)求函數f(x)的最小正周期;
(2)令g(x)=af(x)+b,若函數g(x)在區(qū)間[﹣ , ]上的值域為[﹣1.1],求a+b的值.

查看答案和解析>>

同步練習冊答案