已知橢圓,若成等差數(shù)列,則橢圓的離心率為(       )
A.B.C.D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率,過(guò)點(diǎn)C(-1,0)的直線(xiàn)l交橢圓于A、B兩點(diǎn),且滿(mǎn)足:(λ≥2)。
(1)若λ為常數(shù),試用直線(xiàn)l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問(wèn):實(shí)數(shù)λ和直線(xiàn)l的斜率k(k∈R)分別為何值時(shí),橢圓E的短半軸長(zhǎng)取得最大值?并求出此時(shí)的橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的中心在原點(diǎn),為橢圓的左焦點(diǎn), 為橢圓的一個(gè)頂點(diǎn),過(guò)點(diǎn)作與垂直的直線(xiàn)軸于點(diǎn), 且橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)是關(guān)于的方程(其中為半焦距)的兩個(gè)根.
(1)求橢圓的離心率;
(2)經(jīng)過(guò)、三點(diǎn)的圓與直線(xiàn)
相切,試求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
如圖,F(xiàn)1、F2分別是橢圓的左右焦點(diǎn),M為橢圓上一點(diǎn),MF2垂直于軸,橢圓下頂點(diǎn)和右頂點(diǎn)分別為A,B,且
(1)求橢圓的離心率;
(2)過(guò)F2作OM垂直的直線(xiàn)交橢圓于點(diǎn)P,Q,若,求橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖所示,已知A、B、C是橢圓上三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過(guò)橢圓的中心O,且
(Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點(diǎn)P,Q,使得的平分線(xiàn)總垂直于z軸,試判斷向量是否共線(xiàn),并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知橢圓的左右焦點(diǎn)分別為F1、F2,點(diǎn)P在橢圓C上,且PF1⊥F1F2, |PF1|=,  |PF2|=.  
(I)求橢圓C的方程;
(II)若直線(xiàn)L過(guò)圓的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱(chēng),求直線(xiàn)L的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)橢圓的右焦點(diǎn)為F,C為橢圓短軸的端點(diǎn),向量繞F點(diǎn)順時(shí)針旋轉(zhuǎn)后得到向量,其中點(diǎn)恰好落在直線(xiàn)上,則該橢圓的離心率為_(kāi)_________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)
橢圓C:的兩個(gè)焦點(diǎn)為、,點(diǎn)在橢圓C上,且,.
(1) 求橢圓C的方程;
(2) 若直線(xiàn)過(guò)圓的圓心,交橢圓C于、兩點(diǎn),且、關(guān)于點(diǎn)對(duì)稱(chēng),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率,且橢圓過(guò)點(diǎn)(2,0)。
(1)求橢圓方程;
(2)求圓上的點(diǎn)到橢圓C上點(diǎn)的距離的最大值與最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案