對任意實數(shù),函數(shù),如果函數(shù),那么函數(shù)的最大值等于            .

 

 

【答案】

3

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•龍巖二模)對任意實數(shù)a、b,若a*b的運算原理如圖所示,x1是函數(shù)y=
1x
-1
的零點,y1是二次函數(shù)y=x2-2x+3在[0,3]上的最大值,則x1*y1=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(wx+θ),(A>0,w>0,|θ|<
π
2
)
的圖象如圖,
(1)求它的解析式.
(2)若對任意實數(shù)x∈[0,
π
2
]
,則有|f(x)-m|<2,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.

(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;

(2)證明:對任意實數(shù)0<x1<x2<1, 關(guān)于x的方程:

在(x1,x2)恒有實數(shù)解

(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:

當0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省龍巖市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

對任意實數(shù)a、b,若a*b的運算原理如圖所示,x1是函數(shù)的零點,y1是二次函數(shù)y=x2-2x+3在[0,3]上的最大值,則x1*y1=   

查看答案和解析>>

同步練習(xí)冊答案