若實(shí)數(shù)x,y滿足條件
x-y≥0
x+y-6≥0
x≤5
,則z=2x+y的最大值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=x+2y,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時(shí),
直線y=-2x+z的截距最大,此時(shí)z最大,
x=5
x-y=0
,解得
x=5
y=5
,
即A(5,5),
此時(shí)zmax=2×5+5=15.
故答案為:15
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解二元一次方程組:
n-3r=0
2r
C
r
n
=60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y滿足約束條件
y≤1
x+y≥0
x-y-2≤0
,
(1)求目標(biāo)函數(shù)z=x-2y的最大值;
(2)求目標(biāo)函數(shù)z=
y+2
x+2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-4|+|x+4|≤m的解集為空集,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x,點(diǎn)P(a,b)在函數(shù)y=
1
x
(x>0)圖象上,那么f(a)•f(b)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2為橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),已知P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①“x<1”是“x2<1”的充分不必要條件
②若f(x)是定義在[-1,1]的偶函數(shù)且在[-1,0]上是減函數(shù),θ∈(
π
4
,
π
2
),則f(sinθ)<f(cosθ)
③若f(x)的圖象在點(diǎn)A(1,f(1))處的切線方程是y=
1
2
x+2,則f(1)+f′(1)=3
④若f(x)=lg(
x2+1
-x),則f(lg2)+f(lg
1
2
)=0
⑤函數(shù)f(x)=ex+x-2在區(qū)間(0,1)上有零點(diǎn).
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓4x2+y2=1與直線y=x+m有公共點(diǎn),則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

離心率為
1
2
的橢圓C1與雙曲線C2有相同的焦點(diǎn),且橢圓長軸的端點(diǎn)、短軸的端點(diǎn)、焦點(diǎn)到雙曲線的一條漸近線的距離依次構(gòu)成等差數(shù)列,則雙曲線C2的離心率等于( 。
A、
15
3
B、
15
5
C、
21
3
D、
21
7

查看答案和解析>>

同步練習(xí)冊答案