在數(shù)列{an}中,a1=1,數(shù)列{an}的前n項(xiàng)和Sn滿足nSn+1-(n+3)Sn=0.
(Ⅰ)求a2;
(Ⅱ)求an;
(Ⅲ)若bn=(n+1)2(n∈N),Tn=(-1)a1b1+(-1)a2b2+…+(-1)anbn,n∈N,求Tn.
分析:(Ⅰ)因?yàn)閿?shù)列{a
n}的前n項(xiàng)和S
n滿足nS
n+1-(n+3)S
n=0.令n=1有,S
2-4S
1=0,再根據(jù)S
1=a
1,可求出S
2,進(jìn)而求出
a
2.
(Ⅱ)由 n≥2時(shí),a
n=S
n-S
n-1,可求出數(shù)列{a
n}的遞推公式,再利用累乘法,求出數(shù)列{a
n}的通項(xiàng)公式.
先把(Ⅲ)b
n=(n+1)
2(n∈N)代入T
n,
得,T
n=(-1)
a1b
1+(-1)
a2b
2+…+(-1)
anb
n=-2
2-3
2+…+
(-1)(n+1)
2,再按n=4k,n=4k-1,n=4k-2,
n=4k-3,分情況求出T
n,此題得解.
解答:解:(Ⅰ)S
1=4,∴a
2=3.
(Ⅱ)∵nS
n+1=(n+3)S
n…①∴當(dāng)n≥2時(shí),有(n-1)S
n=(n+2)S
n-1…②
①-②有na
n+1=(n+2)a
n(n≥2),
∴2a3=4a
2,3a
4=5a
3,…(n-1)a
n=(n+1)a
n+1(n≥3)
將以上各式左右兩端分別相乘,得(n-1)a
n=
a
2,,∴a
n=
,n≥3,
當(dāng)n=1,2時(shí)也成立,∴a
n=
(n∈N
+).
(Ⅲ)∵b
n=(n+1)
2(n∈N),∴T
n=(-1)
a1b
1+(-1)
a2b
2+…+(-1)
anb
n=-2
2-3
2+…+
(-1)(n+1)
2,
當(dāng)n=4k,k∈N
+時(shí),T
n=-2
2-3
2+4
2+5
2+…-(4k-2)
2-(4k-1)
2+(4k)
2+(4k+1)
2∵-(4k-2)
2-(4k-1)
2+(4k)
2+(4k+1)
2=32k-4
∴T
n=32(1+2+3+…+k)-4k=(4k)
2+12k=n
2+3n
當(dāng),k∈N
+時(shí),T
n=(4k)
2+3×4k-(4k+1)
2=4k-1=n
當(dāng),k∈N
+時(shí),T
n=(4k)
2+3×4k-(4k+1)
2-(4k)
2=4k-1-(4k)
2=-n
2-3n-3
當(dāng)n=4k-3,k∈N
+時(shí),,T
n=(4k)
2+3×4k-(4k+1)
2+(4k-1)
2=-4k=-n-3
∴T
n=
| -n-3 n=4k-3 | -n2-3n-3 n=4k-2 | n n=4k-1 | n2+3n n=4k |
| |
點(diǎn)評(píng):本題考查了數(shù)列前n項(xiàng)和與通項(xiàng)an之間的關(guān)系,以及根據(jù)遞推公式求通項(xiàng)公式,做題時(shí)須認(rèn)真審題,正確解答.