設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過橢圓右焦點(diǎn)的直線與橢圓C交于兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.
(3)若AB是橢圓C經(jīng)過原點(diǎn)O的弦, MNAB,求證:為定值

解:橢圓的頂點(diǎn)為,即
,解得,  橢圓的標(biāo)準(zhǔn)方程為 …… 3分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.
②設(shè)存在直線,且,.
,                     
,,

=  
所以,故直線的方程為 …………8分
(3)設(shè),
由(2)可得:  |MN|=
=.
消去y,并整理得: ,
|AB|=,∴ 為定值

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知長(zhǎng)方形,,以的中點(diǎn)
原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.
(1)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上任意一點(diǎn)為P,在x軸上有一個(gè)動(dòng)點(diǎn)Q(t,0),其中,探究的最
小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對(duì)于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并于雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為,求拋物線的方程和雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(18分)如圖,直線與拋物線交于兩點(diǎn),與軸相交于點(diǎn),且.
(1)求證:點(diǎn)的坐標(biāo)為;
(2)求證:
(3)求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓 ()的一個(gè)焦點(diǎn)坐標(biāo)為,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),橢圓與直線相交于兩個(gè)不同的點(diǎn),線段的中點(diǎn)為,若直線的斜率為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(本題滿分14分)已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在X軸上,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)  在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以線段OM為直徑且被直線截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作直線OM的垂線與以線段OM為直徑的圓交于點(diǎn)N,求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

 (本小題滿分12分)
橢圓的離心率,過右焦點(diǎn)的直線與橢圓相交
A、B兩點(diǎn),當(dāng)直線的斜率為1時(shí),坐標(biāo)原點(diǎn)到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點(diǎn),使得當(dāng)直線繞點(diǎn)轉(zhuǎn)到某一位置時(shí),有
立?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo)及對(duì)應(yīng)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

極坐標(biāo)系中,由三條曲線圍成的圖形的面積是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案