根據(jù)函數(shù)單調(diào)性定義,判斷并證明函數(shù)y=
ax
x2+1
,a≠1在區(qū)間(-1,1)上的單調(diào)性.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)單調(diào)性的定義,設(shè)x1,x2∈(-1,1),且x1<x2,討論a的符號(hào),判斷y1-y2的符號(hào)即可得出原函數(shù)的單調(diào)性.
解答: 解:設(shè)x1,x2∈(-1,1),且x1<x2,則:
y1-y2=
ax1
x12+1
-
ax2
x22+1
=
a(x2-x1)(x1x2-1)
(x12+1)(x22+1)
;
∵-1<x1<x2<1,∴x2-x1>0,x1x2-1<0;
∴a>0時(shí),y1<y2,∴函數(shù)y在(-1,1)上單調(diào)遞增;
a<0時(shí),y1>y2,∴函數(shù)y在(-1,1)上單調(diào)遞減.
點(diǎn)評(píng):考查函數(shù)單調(diào)性的定義,并根據(jù)函數(shù)單調(diào)性定義判斷函數(shù)的單調(diào)性,在作差求y1-y2時(shí),一般要寫(xiě)成因式乘積的形式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M是由三個(gè)元素-2,3x2+3x-4,x2+x-4組成,若2∈M,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l經(jīng)過(guò)點(diǎn)P(2,1)傾斜角為α,它與橢圓
x2
2
+y2=1相交于A、B兩點(diǎn),求|PA|•|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(Ⅰ)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{an}滿足bn=an•log2(an+1)(n∈N*),其前n項(xiàng)和為T(mén)n,試求滿足Tn+
n2+n
2
>2015的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+1,(x>0)
cosx,(x≤0)
,則下列結(jié)論正確的是( 。
A、f(x)是偶函數(shù)
B、f(x)是增函數(shù)
C、f(x)的值域?yàn)閇-1,+∞)
D、f(x)是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,點(diǎn)E、F分別是AB、AD的中點(diǎn).
(1)求證:EF⊥AC1;
(2)求BD1與平面AFD1所成的角;
(3)求三棱錐B-AFD1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在甲袋內(nèi)裝有8個(gè)白球,4個(gè)紅球,在乙袋內(nèi)裝有6個(gè)白球,6個(gè)紅球,今從兩袋里面各任意取出1個(gè)球,設(shè)取去的白球的個(gè)數(shù)為ξ,則下列概率中等于
C
1
8
C
1
6
+
C
1
4
C
1
6
C
1
12
C
1
12
的是( 。
A、P(ξ=0)
B、P(ξ≤2)
C、P(ξ=1)
D、P(ξ=2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假如有一項(xiàng)活動(dòng)由你主持,活動(dòng)規(guī)則如下,每位參加者先交5元贊助費(fèi),再連續(xù)拋擲三枚骰子,計(jì)算朝上面的數(shù)字和.若和為18,則獲一等獎(jiǎng),得獎(jiǎng)金20元;若和為17或16,則獲二等獎(jiǎng),得獎(jiǎng)金10元;若和為14或15,則獲三等獎(jiǎng),得獎(jiǎng)金5元;若和低于13(含13),則不得獎(jiǎng).此次活動(dòng)所集到的贊助費(fèi)除支付獲獎(jiǎng)人員的獎(jiǎng)金外,其余全部用于資助貧困生的學(xué)習(xí)和生活.
(1)求出此項(xiàng)活動(dòng)的獲獎(jiǎng)概率;
(2)若此項(xiàng)活動(dòng)有2000人參加,請(qǐng)你估計(jì)大約可以有多少資金用于資助貧困學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a,b,c,d},B={a2,b2,c2,d2},其中A⊆N+,B⊆N+,a<b<c<d,且A∩B={a,d},a+d=10.
(1)求a,b;
(2)若A∪B中所有元素的和為124,求A、B.

查看答案和解析>>

同步練習(xí)冊(cè)答案