7.已知四棱錐P-ABCD的五個頂點都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=4,則球O的表面積等于32π.

分析 求出△PAD所在圓的半徑,利用勾股定理求出球O的半徑R,即可求出球O的表面積.

解答 解:令△PAD所在圓的圓心為O1,則
因為PA=PD=2,∠APD=120°,所以AD=2$\sqrt{3}$,
所以圓O1的半徑r=$\frac{1}{2}×\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
因為平面PAD⊥底面ABCD,
所以O(shè)O1=$\frac{1}{2}$AB=2,
所以球O的半徑R=2$\sqrt{2}$,
所以球O的表面積=4πR2=32π.
故答案為32π.

點評 本題考查球O的表面積,考查學(xué)生的計算能力,求出球O的半徑是關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-4x+3.
(1)求f(x)在區(qū)間[0,m]上的最小值;
(2)在給出的直角坐標(biāo)系中,作出函數(shù)g(x)=f(|x|)的圖象,并根據(jù)圖象寫出其單調(diào)減區(qū)間;
(3)若關(guān)于x的方程f(|x|)-a=x至少有三個不相等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)既是奇函數(shù)又在(-1,1)上是減函數(shù)的是(  )
A.y=tanxB.y=x-1C.y=log${\;}_{\frac{1}{2}}$$\frac{3+x}{3-x}$D.y=$\frac{1}{3}$(3x-3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知二次函數(shù)f(x)=x2+ax+b滿足f(0)=6,f(1)=5
(1)求函數(shù)f(x)解析式
(2)求函數(shù)f(x)在x∈[-2,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面面積恒相等,則體積相等.設(shè)A,B為兩個同高的幾何體,p:A,B的體積相等,q:A,B在等高處的截面面積恒相等,根據(jù)祖暅原理可知,p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點D為BC的中點.
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點E為A1C上的點,且滿足A1E=mEC(m∈R),三棱錐E-ADC的體積與三棱柱ABC-A1B1C1的體積之比為1:12,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.三角形ABC的角A.B.C的對邊分別為a.b.c.已知10acosB=3bcosA,$cosA=\frac{{5\sqrt{26}}}{26}$,則C=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將曲線y=sin 2x按照伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$后得到的曲線方程為( 。
A.y=3sin xB.y=3sin 2xC.y=3sin$\frac{1}{2}$xD.y=$\frac{1}{3}$sin 2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知公差不為0的等差數(shù)列{an}的首項a1為1,前n項和為Sn,且a1,a2,a4成等比數(shù)列,則$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{15}}}}$=$\frac{15}{8}$.

查看答案和解析>>

同步練習(xí)冊答案