設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.若S3+S6=2S9,求數(shù)列的公比q.
【答案】分析:先假設(shè)q=1,分別利用首項(xiàng)表示出前3、6、及9項(xiàng)的和,得到已知的等式不成立,矛盾,所以得到q不等于1,然后利用等比數(shù)列的前n項(xiàng)和的公式化簡(jiǎn)S3+S6=2S9得到關(guān)于q的方程,根據(jù)q不等于0和1,求出方程的解,即可得到q的值.
解答:解:若q=1,則有S3=3a1,S6=6a1,S9=9a1
但a1≠0,即得S3+S6≠2S9,與題設(shè)矛盾,q≠1.
又依題意S3+S6=2S9
可得
整理得q3(2q6-q3-1)=0.
由q≠0得方程2q6-q3-1=0.
(2q3+1)(q3-1)=0,
∵q≠1,q3-1≠0,
∴2q3+1=0
∴q=-
點(diǎn)評(píng):本小題主要考查等比數(shù)列的基礎(chǔ)知識(shí),邏輯推理能力和運(yùn)算能力,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若8a2+a5=0,則下列式子中數(shù)值不能確定的是( 。
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,巳知S10=∫03(1+2x)dx,S20=18,則S30=
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S6:S3=3,則S9:S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S6
=(  )
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n 項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S3
=
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案