精英家教網 > 高中數學 > 題目詳情

sin15°•cos15°=________.


分析:給原式乘以2后,利用二倍角的正弦函數公式及特殊角的三角函數值化簡后,即可求出原式的值.
解答:sin15°•cos15°
=×2sin15°•cos15°
=sin30°=
故答案為:
點評:此題考查學生靈活運用二倍角的正弦函數公式及特殊角的三角函數值化簡求值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列各式的值不等于
1
2
的是( 。
A、
sin15°cos15°
B、cos2
π
6
-sin2
π
6
C、
tan22.5°
1+tan222.5°
D、
1
2
(1-cos
π
3
)

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)求 
1-2cos10°sin10°
1-cos2170°
-cos370°
 的值;
(2)若α>0,β>0,且α+β=15°,求
sinα+cos15°sinβ
cosα-sin15°sinβ
 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

某同學在學習時發(fā)現(xiàn),以下五個式子的值都等于同一個常數M:
sin213°+cos217°-sin13°cos17°
sin215°+cos215°-sin15°cos15°
sin218°+cos212°-sin18°cos12°
sin218°+cos248°+sin18°cos48°
sin225°+cos255°+sin25°cos55°
(1)M=
3
4
3
4
;
(2)根據(1)的計算結果,將該同學的發(fā)現(xiàn)推廣為三角恒等式為:
sin2(α-30°)+cos2α+sin(α-30°)cosα=
3
4
sin2(α-30°)+cos2α+sin(α-30°)cosα=
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

觀察下列各等式:sin220°+cos250°+sin20°cos50°=
3
4
,sin215°+cos245°+sin15°cos45°=
3
4
,sin2120°+cos2150°+sin120°cos150°=
3
4
,根據其共同特點,寫出能反映一般規(guī)律的等式
sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4
sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

有四個關于三角函數的命題:p1:sin15°+cos15°>sin16°+cos16°;p2:若一個三角形兩內角α、β滿足sinα•cosβ<0,則此三角形為鈍角三角形; p3:對任意的x∈[0,π],都有
1-cos2x
2
=sinx;p4:要得到函數y=sin(
x
2
-
π
4
)
的圖象,只需將函數y=sin
x
2
的圖象向右平移
π
4
個單位.其中為假命題的是( 。

查看答案和解析>>

同步練習冊答案