已知m,n是不重合的兩條直線,α,β,γ是不重合的三個(gè)平面,下列四個(gè)命題正確的是


  1. A.
    若m∥α,則m平行于α內(nèi)的任意一條直線
  2. B.
    若α∥β,m?α,n?β,則m∥n
  3. C.
    若m∥n,m⊥α,n⊥β,則α∥β
  4. D.
    若α⊥γ,β⊥γ,則α∥β
C
分析:若m∥α,則m與α內(nèi)的任意一條直線平行或異面;若α∥β,m?α,n?β,則m∥n或m與n是異面直線;若m∥n,m⊥α,n⊥β,則α∥β;若α⊥γ,β⊥γ,則α∥β或α與β相交.
解答:若m∥α,則m與α內(nèi)的任意一條直線平行或異面,故A不正確.
若α∥β,m?α,n?β,則m∥n或m與n是異面直線,故B不正確.
若m∥n,m⊥α,n⊥β,則α∥β,故C正確.
若α⊥γ,β⊥γ,則α∥β或α與β相交,故C不正確.
故選C.
點(diǎn)評:本題考查空間中直線與平面間的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意立體幾何中定理和公理的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:
(1)若α∩β=n,m∥n,則m∥α,m∥β;
(2)若m⊥α,m⊥β,則α∥β;
(3)若m∥α,m⊥n,則n⊥α;
(4)若m⊥α,n?α,則m⊥n.
其中所有真命題的序號(hào)是
(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:
①若m?α,n∥α,則m∥n;
②若m∥α,m∥β,則α∥β;
③若α∩β=n,m∥n,則m∥α且m∥β;
④若m⊥α,m⊥β,則α∥β.
其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、已知m,n是不重合的直線,α,β是不重合的平面,給出下列命題;
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③如果m?α,n?α,m,n是異面直線,則n與α相交;
④若α∩β=m.n∥m,且n?α,n?β,則n∥α,且n∥β
其中正確確命題的序號(hào)是
①④
(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、n是不重合的直線,α、β是不重合的平面,給出下列四個(gè)命題
①若m⊥α,m⊥β,則α∥β
②若m?α,n?β,m∥n,則α∥β
③若m∥n,m⊥α,則n⊥α
④若m⊥α,m?β,則α⊥β
其中正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、n是不重合的兩直線,α、β、γ是三個(gè)兩兩不重合的平面.給出下面四個(gè)命題:
①若m⊥α,m⊥β則α∥β;
②若γ⊥α,γ⊥β則α∥β;
③若m⊆α,n⊆β,m∥n則α∥β;
④若m、n是異面直線,m⊆α,m∥β,n⊆β,n∥α則α∥β,
其中是真命題的是( 。

查看答案和解析>>

同步練習(xí)冊答案