【題目】設(shè)F為雙曲線(xiàn) ﹣ =1(a>b>0)的右焦點(diǎn),過(guò)點(diǎn)F的直線(xiàn)分別交兩條漸近線(xiàn)于A,B兩點(diǎn),OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線(xiàn)的離心率為( )
A.
B.2
C.
D.
【答案】C
【解析】解:不妨設(shè)OA的傾斜角為銳角,
∵a>b>0,即0< <1,
∴漸近線(xiàn)l1的傾斜角為(0, ),
∴ = =e2﹣1<1,
∴1<e2<2,
∵2|AB|=|OA|+|OB|,OA⊥AB,
∴|AB|2=|OB|2﹣|OA|2
=(|OB|﹣|OA|)(|OB|+|OA|)=2(|OB|﹣|OA|)|AB|,
∴|AB|=2(|OB|﹣|OA|),
∴|OB|﹣|OA|= |AB|,
又|OA|+|OB|=2|AB|,
∴|OA|= |AB|,
∴在直角△OAB中,tan∠AOB= = ,
由對(duì)稱(chēng)性可知:OA的斜率為k=tan( ∠AOB),
∴ = ,∴2k2+3k﹣2=0,
∴k= (k=﹣2舍去);
∴ = ,∴ = =e2﹣1= ,
∴e2= ,
∴e= .
所以答案是:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)判斷函數(shù)是否有零點(diǎn);
(2)設(shè)函數(shù),若在上是減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線(xiàn)航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里,問(wèn)乙船每小時(shí)航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期、振幅、初相、對(duì)稱(chēng)軸;
(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長(zhǎng)為1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知拋物線(xiàn) C1:y2=2px (p>0),直線(xiàn) l 與拋物線(xiàn) C 相交于 A、B 兩點(diǎn),且當(dāng)傾斜角為 60°的直線(xiàn) l 經(jīng)過(guò)拋物線(xiàn) C1 的焦點(diǎn) F 時(shí),有|AB|= .
(Ⅰ)求拋物線(xiàn) C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線(xiàn) l,使得線(xiàn)段 AB 被圓 C2 截成三等分?若存在,求出直線(xiàn) l 的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)x2=4y的焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)相交于A、B兩點(diǎn).
(1)設(shè)拋物線(xiàn)在A、B處的切線(xiàn)的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程.
(2)若直線(xiàn)l與橢圓 + =1的交點(diǎn)為C,D,問(wèn)是否存在這樣的直線(xiàn)l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式|x﹣a|<b的解集為{x|2<x<4}.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)實(shí)數(shù)x,y,z 滿(mǎn)足 + + =1,求x,y,z的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿(mǎn)足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年5月12日,國(guó)家統(tǒng)計(jì)局公布了《2013年農(nóng)民工監(jiān)測(cè)調(diào)查報(bào)告》,報(bào)告顯示:我國(guó)農(nóng)
民工收入持續(xù)快速增長(zhǎng).某地區(qū)農(nóng)民工人均月收入增長(zhǎng)率如圖1,并將人均月收入繪制成如
圖2的不完整的條形統(tǒng)計(jì)圖.
圖1 圖2
根據(jù)以上統(tǒng)計(jì)圖來(lái)判斷以下說(shuō)法錯(cuò)誤的是
A. 2013年農(nóng)民工人均月收入的增長(zhǎng)率是
B. 2011年農(nóng)民工人均月收入是元
C. 小明看了統(tǒng)計(jì)圖后說(shuō):“農(nóng)民工2012年的人均月收入比2011年的少了”
D. 2009年到2013年這五年中2013年農(nóng)民工人均月收入最高
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com