【題目】已知函數(shù),.
(1)若,且直線是曲線的一條切線,求實數(shù)的值;
(2)若不等式對任意恒成立,求的取值范圍;
(3)若函數(shù)有兩個極值點,,且,求的取值范圍.
【答案】(1) (2) (3)
【解析】
(1)代入a的值,根據(jù)切線方程得到關于x0的方程,求出切點坐標,解出m即可;
(2)問題轉化為alnx1>0,記g(x)=alnx1,通過討論a的范圍,求出函數(shù)的單調區(qū)間,從而確定a的范圍即可;
(3)法一:求出h(x2)﹣h(x1)的解析式,記m(x)=2[(x)lnxx],x≥1,根據(jù)函數(shù)的單調性求出a的范圍即可;
法二:由h(x)=f(x)﹣x=alnxx,x>0,以及h(x)有兩個極值點x1,x2(x1<x2),得到x1+x2=a,x1x2=1,設t2(t>1),從而h(x2)﹣h(x1) 等價于 h(t)=(t)lntt,t>1,記m(x)=(x)lnxx,x≥1,根據(jù)函數(shù)的單調性求出a的范圍即可.
(1)當時, ,.
設直線與曲線相切于點,
則,即,
解得,即切點為,
因為切點在上,所以,解得.
(2)不等式可化為.
記, 則對任意恒成立.
考察函數(shù), ,.
當時, ,在上單調遞減,又,
所以,不合題意;
當時, ,;, ,
所以在上單調遞減,在上單調遞增,
若,即時,在上單調遞增,
所以時, ,符合題意;
若,即時,在上單調遞減,
所以當時, ,不符合題意;
綜上所述,實數(shù)的取值范圍為.
(3)方法一:,,.
因為有兩個極值點, ,
所以,即的兩實數(shù)根為, , ,
所以, , ,所以, ,
從而
.
記,.
則 (當且僅當時取等號),
所以在上單調遞增,又,
不等式可化為,所以.
因為,且在上遞增,所以,
即的取值范圍為.
方法二:, ,.
因為有兩個極值點, ,
所以,即的兩實數(shù)根為, , ,
所以, , ,所以,.
設,則, ,所以, , ,
從而等價于,.
記,.
則 (當且僅當時取等號),
所以在上單調遞增.
又, ,所以.
因為,且在上遞增,所以,
即的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】設.
(1) 求函數(shù)的單調區(qū)間;
(2) 若證明:
(3)若函數(shù)有兩個零點,且,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中, 為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)當時, ,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市“招手即!惫财嚨钠眱r按下列規(guī)則制定:5公里以內(含5公里),票價2元;5公里以上,每增加5公里,票價增加1元(不足5公里的按5公里計算).如果某條線路的總里程為20公里,
(1)請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.
(2)與在(5,10]內有且僅有1個公共點,求a范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】松江有軌電車項目正在如火如荼的進行中,通車后將給市民出行帶來便利,已知某條線路通車后,電車的發(fā)車時間間隔t(單位:分鐘)滿足,市場調研測試,電車載客量與發(fā)車時間間隔t相關,當時電車為滿載狀態(tài),載客為400人,當時,載客量會少,少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客為272人,記電車載客為.
(1)求的表達式;
(2)若該線路分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若,且直線是曲線的一條切線,求實數(shù)的值;
(2)若不等式對任意恒成立,求的取值范圍;
(3)若函數(shù)有兩個極值點,,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成績,整理數(shù)據(jù)并按分數(shù)段進行分組,假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,則得到體育成績的折線圖如圖.
(1)體育成績大于或等于70分的學生常被稱為“體育良好”.已知該校高一年級有1000名學生,試估計高一年級中“體育良好”的學生人數(shù);
(2)為分析學生平時的體育活動情況,現(xiàn)從體育成績在和的樣本學生中隨機抽取2人,求在抽取的2名學生中,至少有1人體育成績在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com