拋物線M: 的準(zhǔn)線過(guò)橢圓N: 的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.

(1)求拋物線M的方程.
(2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.

(1) (2)-1

解析試題分析:(1)由拋物線的準(zhǔn)線方程,求出p即可;
(2)由直線BC方程求出x1和x2之間的關(guān)系式,然后用x1和x2表示出D點(diǎn)的坐標(biāo),
即可求出直線CD的斜率.
試題解析:(1)因?yàn)闄E圓N:的左焦點(diǎn)為(,0),
所以,解得p=1,所以拋物線M的方程為.
(2)由題意知 A(),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/5/1kmg13.png" style="vertical-align:middle;" />,所以.由于t>0,所以t= ①
由點(diǎn)B(0,t),C( )的坐標(biāo)知,直線BC的方程為
由因?yàn)锳在直線BC上,故有,將①代入上式,得,解得,又因?yàn)镈( ),所以直線CD的斜率為
kCD====-1.
考點(diǎn):1.拋物線的方程和性質(zhì);2.方程和斜率.3.橢圓方程的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓直線與圓相切,且交橢圓兩點(diǎn),是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線AS,BS與直線分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;
(2)如圖,、是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意點(diǎn),直線軸于點(diǎn),直線于點(diǎn),設(shè)的斜率為的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍;
(3)過(guò)原點(diǎn)任意作兩條互相垂直的直線與橢圓相交于四點(diǎn),設(shè)原點(diǎn)到四邊形的一邊距離為,試求時(shí)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線焦點(diǎn)為,直線經(jīng)過(guò)點(diǎn)且與拋物線相交于兩點(diǎn)

(Ⅰ)若線段的中點(diǎn)在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是橢圓的右焦點(diǎn),圓軸交于兩點(diǎn),是橢圓與圓的一個(gè)交點(diǎn),且 
(Ⅰ)求橢圓的離心率;
(Ⅱ)過(guò)點(diǎn)與圓相切的直線的另一交點(diǎn)為,且的面積為,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過(guò)點(diǎn),且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上(也不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)右頂點(diǎn)到右焦點(diǎn)的距離為,短軸長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)的直線與橢圓分別交于、兩點(diǎn),若線段的長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn)

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案