【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

求曲線的直角坐標方程,并指出其表示何種曲線;

設直線與曲線交于兩點,若點的直角坐標為

試求當時, 的值.

【答案】曲線的直角坐標方程為 它表示以為圓心、為半徑的圓; .

【解析】試題分析:(Ⅰ)曲線 ,可以化為;可得圓;

(Ⅱ)當時,直線的參數(shù)方程為 (為參數(shù)),利用參數(shù)的幾何意義求當, 的值.

試題解析:

Ⅰ)曲線 ,可以化為

因此,曲線的直角坐標方程為

它表示以為圓心、為半徑的圓. 

Ⅱ)法一:當時,直線的參數(shù)方程為 (為參數(shù))

在直線上,且在圓內,把

代入中得

設兩個實數(shù)根為,則兩點所對應的參數(shù)為,

,

 

法二:由(Ⅰ知圓的標準方程為

即圓心的坐標為半徑為,點 在直線上,且在圓

圓心到直線的距離

所以弦的長滿足

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)t滿足f(0)=f(2)=2,f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)當x∈[﹣1,2]時,求y=f(x)的值域;
(3)設h(x)=f(x)﹣mx在[1,3]上是單調函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2annN*).

1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;

(2)若bn=2n+1an+2n+1,數(shù)列{bn}的前n項和為Tn.求滿足不等式2010n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏。將中學組和大學組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調查,下面是根據調查結果繪制的選手等級人數(shù)的條形圖.

(Ⅰ)若將一般等級和良好等級合稱為合格等級,根據已知條件完成下面的2×2列聯(lián)表,并據此資料你是否有95﹪的把握認為選手成績優(yōu)秀與文化程度有關?

優(yōu)秀

合格

合計

大學組

中學組

合計

注: ,其中.

0.10

0.05

0. 005

2.706

3.841

7.879

(Ⅱ)若江西參賽選手共80人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

(Ⅲ)如果在優(yōu)秀等級的選手中取4名,在良好等級的選手中取2名,再從這6人中任選3人組成一個比賽團隊,求所選團隊中的有2名選手的等級為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=x+ ﹣2.
(1)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(2)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)設,求的最小值;

(2)若曲線僅有一個交點,證明:曲線在點處有相同的切線,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a+a1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a
(Ⅱ)a +a ;
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某重點高中擬把學校打造成新型示范高中,為此制定了學生“七不準”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實施一段時間后,學校就新規(guī)章制度隨機抽取部分學生進行問卷調查,調查卷共有10個問題,每個問題10分,調查結束后,按分數(shù)分成5組: , , ,并作出頻率分布直方圖與樣本分數(shù)的莖葉圖(圖中僅列出了得分在 的數(shù)據).

1)求樣本容量和頻率分布直方圖中的的值;

2)在選取的樣本中,從分數(shù)在70分以下的學生中隨機抽取2名學生進行座談會,求所抽取的2名學生中恰有一人得分在內的概率.

查看答案和解析>>

同步練習冊答案