【題目】若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}A,至少存在一個i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl.
a11 | a12 | … | a1m |
a21 | a22 | … | a2m |
… | … | … | … |
an1 | an2 | … | anm |
(1)當(dāng)n=4時,判斷下列兩個集合組是否具有性質(zhì)P,如果是請畫出所對應(yīng)的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(2)當(dāng)n=7時,若集合組A1,A2,A3具有性質(zhì)P,請先畫出所對應(yīng)的7行3列的一個數(shù)表,再依此表格分別寫出集合A1,A2,A3;
(3)當(dāng)n=100時,集合組A1,A2,…,At是具有性質(zhì)P且所含集合個數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個數(shù))
【答案】(1)集合組1具有性質(zhì)P,集合組2不具有性質(zhì)P,理由見解析;(2)圖見解析,A1={3,4,5,7},A2={2,4,6,7},A3={1,5,6,7};(3)304
【解析】
(1)根據(jù)題意檢驗兩個集合組是否滿足性質(zhì)即可;
(2)一共7行對應(yīng)1,2,3,4,5,6,7,七個數(shù),其中每列的1或0代表這個集合里面有或者無對應(yīng)的數(shù),要求每行必須有1,任意兩個數(shù)至少有一列只出現(xiàn)一個;
(3)條件①可知數(shù)表M中任意一行不全為0,由條件②可得數(shù)表M中任意兩行不完全相同,結(jié)合排列組合知識求解.
(1)集合組1具有性質(zhì)P.
所對應(yīng)的數(shù)表為:
1 | 0 | 0 |
0 | 1 | 0 |
1 | 1 | 0 |
0 | 0 | 1 |
集合組2不具有性質(zhì)P.
因為存在{2,3}{1,2,3,4},有{2,3}∩A1={2,3},{2,3}∩A2={2,3},{2,3}∩A3=,
與對任意的{x,y}A,都至少存在一個i∈{1,2,3},有Ai∩{x,y}={x}或{y}矛盾,
所以集合組A1={2,3,4},A2={2,3},A3={1,4}不具有性質(zhì)P.…
(2)
A1={3,4,5,7},A2={2,4,6,7},A3={1,5,6,7}.
(注:表格中的7行可以交換得到不同的表格,它們所對應(yīng)的集合組也不同)
(3)設(shè)A1,A2,…,At所對應(yīng)的數(shù)表為數(shù)表M,
因為集合組A1,A2,…,At為具有性質(zhì)P的集合組,所以集合組A1,A2,…,At滿足條件①和②,
由條件①:A1∪A2∪…∪At=A,可得對任意x∈A,都存在i∈{1,2,3,…,t}有x∈Ai,
所以axi=1,即第x行不全為0,所以由條件①可知數(shù)表M中任意一行不全為0.
由條件②知,對任意的{x,y}A,都至少存在一個i∈{1,2,3,…,t},使Ai∩{x,y}={x}或{y},所以axi,ayi一定是一個1一個0,即第x行與第y行的第i列的兩個數(shù)一定不同.
所以由條件②可得數(shù)表M中任意兩行不完全相同.
因為由0,1所構(gòu)成的t元有序數(shù)組共有2t個,去掉全是0的t元有序數(shù)組,共有2t﹣1個,又因數(shù)表M中任意兩行都不完全相同,所以100≤2t﹣1,所以t≥7.
又t=7時,由0,1所構(gòu)成的7元有序數(shù)組共有128個,去掉全是0的數(shù)組,共127個,選擇其中的100個數(shù)組構(gòu)造100行7列數(shù)表,則數(shù)表對應(yīng)的集合組滿足條件①②,即具有性質(zhì)P.所以t=7.
因為|A1|+|A2|+…+|At|等于表格中數(shù)字1的個數(shù),
所以,要使|A1|+|A2|+…+|At|取得最小值,只需使表中1的個數(shù)盡可能少,
而t=7時,在數(shù)表M中,1的個數(shù)為1的行最多7行;1的個數(shù)為2的行最多C72=21行;1的個數(shù)為3的行最多C73=35行;1的個數(shù)為4的行最多C74=35行;
因為上述共有98行,所以還有2行各有5個1,
所以此時表格中最少有7+2×21+3×35+4×35+5×2=304個1.所以|A1|+|A2|+…+|At|的最小值為304.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點.
(1)若為線段上的動點,證明:平面平面;
(2)若為線段,,上的動點(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴(yán)重:
日均濃度 | ||||||
空氣質(zhì)量級別 | 一級 | 二級 | 三級 | 四級 | 五級 | 六級 |
空氣質(zhì)量類型 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
甲、乙兩城市2013年2月份中的15天對空氣質(zhì)量指數(shù)PM2.5進行監(jiān)測,獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:
(Ⅰ)根據(jù)你所學(xué)的統(tǒng)計知識估計甲、乙兩城市15天內(nèi)哪個城市空氣質(zhì)量總體較好?(注:不需說明理由)
(Ⅱ)在15天內(nèi)任取1天,估計甲、乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;
(Ⅲ)在乙城市15個監(jiān)測數(shù)據(jù)中任取2個,設(shè)X為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的內(nèi)切圓與三邊的切點分別為,已知,內(nèi)切圓圓心,設(shè)點A的軌跡為R.
(1)求R的方程;
(2)過點C的動直線m交曲線R于不同的兩點M,N,問在x軸上是否存在一定點Q(Q不與C重合),使恒成立,若求出Q點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)甲、乙、丙三所單位進行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )
A.36B.72C.108D.144
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對其定義域內(nèi)的任意,,當(dāng)時總有,則稱為緊密函數(shù),例如函數(shù)是緊密函數(shù),下列命題:
緊密函數(shù)必是單調(diào)函數(shù);函數(shù)在時是緊密函數(shù);
函數(shù)是緊密函數(shù);
若函數(shù)為定義域內(nèi)的緊密函數(shù),,則;
若函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導(dǎo)數(shù),則其導(dǎo)函數(shù)在定義域內(nèi)的值一定不為零.
其中的真命題是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】裴波那契數(shù)列(Fibonacci sequence )又稱黃金分割數(shù)列,因為數(shù)學(xué)家列昂納多·裴波那契以兔子繁殖為例子引入,故又稱為“兔子數(shù)列”,在數(shù)學(xué)上裴波那契數(shù)列被以下遞推方法定義:數(shù)列滿足:,,現(xiàn)從該數(shù)列的前40項中隨機抽取一項,則能被3整除的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com