7.$\overrightarrow{a}$,$\overrightarrow$均是非零向量,則使得|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|成立的一個充分不必要條件是( 。
A.$\overrightarrow{a}$⊥$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$C.$\overrightarrow{a}$=-2$\overrightarrow$D.$\overrightarrow{a}$=2$\overrightarrow$

分析 運用向量共線和垂直的條件,以及向量共線定理,結合充分必要條件的定義,即可判斷.

解答 解:$\overrightarrow{a}$=-2$\overrightarrow$時,|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|成立,
反之,不成立,
故選:C.

點評 本題考查的知識點是充要條件的定義,向量共線的充要條件,向量加法的三角形法則,其中將已知中的命題,轉(zhuǎn)化為兩個向量的方向關系是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.將一根長為3米的繩子在任意位置剪斷,則剪得兩段的長度都不小于1米的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列結論不正確的是(  )
A.若ab>bc,則a>cB.若a3>b3,則a>b
C.若a>b,c<0,則ac<bcD.若$\sqrt{a}$<$\sqrt$,則a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,向量$\overrightarrow m=({b,-\sqrt{3}a})$與$\overrightarrow n=({cosA,sinB})$垂直.
(1)求A;
(2)若B+$\frac{π}{12}$=A,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k的值;
(2)若f(1)<0,試分析判斷y=f(x)的單調(diào)性(不需證明),并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)f(x)滿足tanx•f′(x)<f(x),則下列選項中正確的是( 。
A.f($\frac{π}{6}$)sin1<$\frac{1}{2}$f(1)B.f($\frac{π}{6}$)sin1=$\frac{1}{2}$f(1)
C.f($\frac{π}{6}$)sin1>$\frac{1}{2}$f(1)D.無法確定f($\frac{π}{6}$)sin1與$\frac{1}{2}$f(1)的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一個命題與它的逆命題、否命題、逆否命題這四個命題中,真命題的個數(shù)( 。
A.一定是奇數(shù)B.一定是偶數(shù)
C.可能是奇數(shù)也可能是偶數(shù)D.上述判斷都不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖所示,已知長方體ABCD中,$AB=2AD=2\sqrt{2},M$為DC的中點.將△ADM沿AM折起,使得AD⊥BM.
(1)求證:平面ADM⊥平面ABCM;
(2)是否存在滿足$\overrightarrow{BE}=t\overrightarrow{BD}({0<t<1})$的點E,使得二面角E-AM-D為大小為$\frac{π}{4}$.若存在,求出相應的實數(shù)t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.log525=( 。
A.5B.2C.3D.4

查看答案和解析>>

同步練習冊答案