|
|
如圖,已知中心在原點(diǎn)O、焦點(diǎn)在x軸上的橢圓T過(guò)點(diǎn)M(2,1),離心率為;拋物線C頂點(diǎn)在原點(diǎn),對(duì)稱軸為x軸且過(guò)點(diǎn)M.
(Ⅰ)當(dāng)直線l0經(jīng)過(guò)橢圓T在左焦點(diǎn)且平行于OM時(shí),求直線l0的方程;
(Ⅱ)若斜率為的直線l不過(guò)點(diǎn)M,與拋物線C交于A,B兩個(gè)不同的點(diǎn),求證:直線MA,MB與x軸總圍成等腰三角形.
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)函數(shù)f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在區(qū)間上具有單調(diào)性,且,則f(x)的最小正周期為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)F1、F2分別為雙曲線的左、右焦點(diǎn),若在雙曲線右支上存在點(diǎn)P,滿足PF2=F1F2,且F2到直線PF1的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的漸近線方程為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
P是雙曲線的右支上一點(diǎn),點(diǎn)M,N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的動(dòng)點(diǎn)則|PM|-|PN|的最小值為
|
[ ] |
A. |
1
|
B. |
2
|
C. |
3
|
D. |
4
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
下列四個(gè)命題:
①若m∈(0,1],則函數(shù)的最小值為;
②已知平面α,β,直線l,m,若l⊥α,mβ,α⊥β,則l∥m;
③△ABC中,和的夾角等于180°-A;
④若動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離比到直線l:x=-2的距離小1,則動(dòng)點(diǎn)P的軌跡方程為y2=4x.
其中正確命題的序號(hào)為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
函數(shù)f(x)=sinxsin(-x)的最小正周期為
|
[ ] |
A. |
2π
|
B. |
|
C. |
π
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知x>0,y>0,若+>m2+2 m恒成立,則實(shí)數(shù)m的取值范圍是
|
[ ] |
A. |
m≥4或m≤-2
|
B. |
m≥2或m≤-4
|
C. |
-2<m<4
|
D. |
-4<m<2
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
下圖是一個(gè)幾何體的三視圖.已知側(cè)視圖是一個(gè)等邊三角形,根據(jù)圖中尺寸(單位:cm);可知這個(gè)幾何體的表面積是
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
下列有關(guān)命題的說(shuō)法正確的是
|
[ ] |
A. |
命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”;
|
B. |
“x=-1”是“x2-5x-6=0”的必要不充分條件;
|
C. |
命題“x∈R,使得x2+x-1<0”的否定是:“x∈R,均有x2+x-1>0”;
|
D. |
命題“若x=y(tǒng),則sinx=siny”的逆否命題為真命題;
|
|
|
查看答案和解析>>