3.函數(shù)y=tan(2x+$\frac{π}{4}$)的單調(diào)遞增區(qū)間是($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.

分析 根據(jù)正切函數(shù)y=tanx的單調(diào)增區(qū)間,令kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈Z;
求出不等式組的解集即可.

解答 解:函數(shù)y=tan(2x+$\frac{π}{4}$),
令kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈Z;
解得kπ-$\frac{3π}{4}$<2x<kπ+$\frac{π}{4}$,k∈Z,
即$\frac{kπ}{2}$-$\frac{3π}{8}$<x<$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z;
所以函數(shù)y=2tan(2x+$\frac{π}{4}$)的單調(diào)遞增區(qū)間是:
($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.
故答案為:($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),k∈Z.

點(diǎn)評 本題考查了正切函數(shù)的單調(diào)性以及整體代換的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過拋物線y2=4x的焦點(diǎn)F作互相垂直的弦AC,BD,則點(diǎn)A,B,C,D所構(gòu)成四邊形的面積的最小值為( 。
A.16B.32C.48D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓$\frac{x^2}{8}+\frac{y^2}{6}$=1上存在n個(gè)不同的點(diǎn)P1,P2,…,Pn,橢圓的右焦點(diǎn)為F.?dāng)?shù)列{|PnF|}是公差大于$\frac{1}{5}$的等差數(shù)列,則n的最大值是( 。
A.16B.15C.14D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,an是Sn和1的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn=an•log2an+1,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知$\overrightarrow{m}$=(2b,1).$\overrightarrow{n}$=(ccosA+acosC,cosA),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角A的值;
(2)若b,a,c成等比數(shù)列.且△ABC的外接圓半徑R=$\sqrt{3}$.試求△ABC的內(nèi)切圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過點(diǎn)P(1,1)作直線l交圓x2+y2=4于A,B兩點(diǎn),若$|AB|=2\sqrt{3}$,則直線l的方程為x=1或y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若x、y滿足約束條件$\left\{\begin{array}{l}{2x+y≤8}\\{x+3y≤9}\\{x≥0,y≥0}\end{array}\right.$,則4x+y的最大值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,且F2為拋物線${C_2}:{y^2}=2px$的焦點(diǎn),C2的準(zhǔn)線l被C1和圓x2+y2=a2截得的弦長分別為$2\sqrt{2}$和4.
(1)求C1和C2的方程;
(2)直線l1過F1且與C2不相交,直線l2過F2且與l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x軸上方,求四邊形AF1F2C的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓${C_1}:{({x-4})^2}+{({y-2})^2}=20$與y軸交于O,A兩點(diǎn),圓C2過O,A兩點(diǎn),且直線C2O與圓C1相切;
(1)求圓C2的方程;
(2)若圓C2上一動(dòng)點(diǎn)M,直線MO與圓C1的另一交點(diǎn)為N,在平面內(nèi)是否存在定點(diǎn)P使得PM=PN始終成立,若存在求出定點(diǎn)坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案