【答案】
分析:(I)根據(jù)“T數(shù)列”的定義加以驗證,可得{a
n}是“T數(shù)列”,對應(yīng)的實常數(shù)分別為1和2;數(shù)列{b
n}也是“T數(shù)列”,對應(yīng)的實常數(shù)分別為2和0;
(II)若數(shù)列{a
n}是“T數(shù)列”,則存在實常數(shù)p、q,滿足a
n+1=pa
n+q、a
n+2=pa
n+1+q對于任意n∈N
*都成立,兩式對應(yīng)相加即可證出數(shù)列{a
n+a
n+1}也是“T數(shù)列”,對應(yīng)的實常數(shù)分別為p、2q;
(III)根據(jù)等式a
n+a
n+1=3t•2
n(n∈N
*),分別取n=2、4、…、2012,得到1006個等式.而S
2013=a
1+(a
2+a
3)+(a
4+a
5)+…+(a
2010+a
2011)+(a
2012+a
2013),將a
1=2和前面1006個等式代入,結(jié)合等比數(shù)列求和公式即可算出數(shù)列{a
n}前2013項的和的表達式.
解答:解:(Ⅰ)因為a
n=2n,則有a
n+1=2n+2=1×a
n+2(n∈N
*),
所以數(shù)列{a
n}是“T數(shù)列”,對應(yīng)的實常數(shù)分別為1和2.
因為b
n=3•2
n,則有b
n+1=3•2
n+1=2×3•2
n+1=2b
n (n∈N
*),
所以數(shù)列{b
n}是“T數(shù)列”,對應(yīng)的實常數(shù)分別為2和0---(4分)
(Ⅱ)若數(shù)列{a
n}是“T數(shù)列”,則存在實常數(shù)p、q,
使得a
n+1=pa
n+q對于任意n∈N
*都成立,且有a
n+2=pa
n+1+q對于任意n∈N
*都成立,
因此(a
n+1+a
n+2)=p(a
n+a
n+1)+2q對于任意n∈N
*都成立,故數(shù)列{a
n+a
n+1}也是“T數(shù)列”.
對應(yīng)的實常數(shù)分別為p、2q.---------------------(8分)
(Ⅲ)因為 a
n+a
n+1=3t•2
n(n∈N
*),
則有a
2+a
3=3t•2
2,a
4+a
5=3t•2
3,…,a
2010+a
2011=3t•2
2010,a
2012+a
2013=3t•2
2012.
故數(shù)列{a
n}的前2013項的和
S
2013=a
1+(a
2+a
3)+(a
4+a
5)+…+(a
2010+a
2011)+(a
2012+a
2013)
=2+3t•2
2+3t•2
4+…+3t•2
2010+3t•2
2012=2+3t•
=2+t(2
2014-4).---------(13分)
點評:本題給出“T數(shù)列”,要我們驗證兩個數(shù)列是否為“T數(shù)列”,并根據(jù)題意求數(shù)列{a
n}的前2013項的和.著重考查了數(shù)列的遞推公式和等比數(shù)列前n項和的公式等知識,考查了轉(zhuǎn)化化歸與函數(shù)方程的思想,屬于中檔題.