【題目】已知直線l:2x+y﹣1=0與圓C:x2+y2=1相交于A,B兩點.
(1)求△AOB的面積(O為坐標原點);
(2)設直線ax+by=1與圓C:x2+y2=1相交于M,N兩點(其中a,b是實數(shù)),若OM⊥ON,試求點P(a,b)與點Q(0,1)距離的最大值.

【答案】
(1)解:直線l:2x+y﹣1=0與圓C:x2+y2=1聯(lián)立可得5x2﹣4x=0,∴x=0或x= ,

∴|AB|= =

圓心到直線的距離d=

∴△AOB的面積S=


(2)解:由OM⊥ON可知△MON是等腰直角三角形,且圓C的半徑為1,所以圓心O到直線ax+by=1的距離為 ,即 ,化簡得a2+b2=2..

所以點P在以 為半徑,原點為圓心的圓上運動,故


【解析】(1)直線l:2x+y﹣1=0與圓C:x2+y2=1聯(lián)立求出x,可得|AB|,求出圓心到直線的距離,即可求出三角形的面積;(2)根據(jù)直線和圓的位置關系以及兩點間的距離公式即可得到結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,且滿足b2﹣a2=ac,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點滿足: .

1)求動點的軌跡的方程;

2)設過點的直線與曲線交于兩點,點關于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題12分)已知函數(shù)

(1)=0,判斷函數(shù)的單調性;

(2)時,<0恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD中,底面ABCD為菱形,且直線PA⊥平面ABCD,又棱PA=AB=2,E為CD的中點,∠ABC=60°.
(Ⅰ) 求證:直線EA⊥平面PAB;
(Ⅱ) 求直線AE與平面PCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 ,g(x)=x3﹣x2﹣3.
(1)當a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對任意的 ,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù),

1)當時,求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin(x+ )圖象上的所有點縱坐標不變,橫坐標變?yōu)樵瓉淼? 倍,所得函數(shù)為f(x),則函數(shù)f(x)=

查看答案和解析>>

同步練習冊答案