(09年崇文區(qū)二模文)(14分)

        如圖,直三棱柱ABC―A1B1C1的底面積是等腰直角三角形,∠A1B1C1=90°,A1C1=1,AA1=, M、 N、D分別是線段AC1、B1B、A11的中點(diǎn)。

   (I)證明:MN//平面ABC;

   (II)證明:,并求出二面角A1―AB1―C1的大小。

解析:(I)證明:取AC中點(diǎn)F,連結(jié)MF,BF,

在三角形AC1C中,MF//C1C且

,

       

(II)三棱柱ABC―A1B1C1是直三棱柱,平面ABB1A1⊥平面A1B1C1,又點(diǎn)D是等腰直角三角形A1B1C1斜邊A1B1的中點(diǎn)。

則C1D⊥A1B1

所以,;

平面A1B1BA內(nèi),過D作DE⊥AB1,垂足為E,連結(jié)C1E,則C1E⊥AB1;

是二面角,A1―AB1―C1的平面角,

在Rt

所以,二面角,A1―AB1―C1的大小為   ………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年崇文區(qū)二模文)(14分)

已知函數(shù)的圖像經(jīng)過點(diǎn)(1,n2),n=1,2,…,數(shù)列{an}為等差數(shù)列。

   (I)求數(shù)列{an}的通項(xiàng)公式;

   (II)當(dāng)n為奇數(shù)時(shí),設(shè),是否存在自然數(shù)m和M,使得不等式恒成立?若存在,求出M―m的最小值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年崇文區(qū)二模文)(14分)

    已知直線,拋物線,定點(diǎn)M(1,1)。

   (I)當(dāng)直線經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N 是否在拋物線C上;

   (II)當(dāng)變化且直線與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式;當(dāng)且P與M重合時(shí),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年崇文區(qū)二模文)(13分)

        某會(huì)議室用3盞燈照明,每盞燈各使用節(jié)能燈棍一只,且型號(hào)相同。假定每盞燈能否正常照明只與燈棍的壽命有關(guān),該型號(hào)的燈棍壽命為1年以上的概率為0.8,壽命為2年以上的概率為0.3,從使用之日起每滿1年進(jìn)行一次燈棍更換工作,只更換已壞的燈棍,平時(shí)不換。

   (I)在第一次燈棍更換工作中,求不需要更換燈棍和更換2只燈棍的概率;

   (II)在第二次燈棍更換工作中,對(duì)其中的某一盞燈來(lái)說,求該燈需要更換燈棍的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年崇文區(qū)二模文)(13分)設(shè)函數(shù)的導(dǎo)函數(shù)為

   (1)a表示

   (II)若函數(shù)R上存在極值,求a的范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案