已知函數(shù)在處取得極小值.
(1)求的值;
(2)若在處的切線方程為,求證:當(dāng)時(shí),曲線不可能在直線的下方.
(1)(2)證明當(dāng)時(shí),曲線不可能在直線的下方.那么只要證明存在一個(gè)變量函數(shù)值大于函數(shù)的函數(shù)值,即可。
【解析】
試題分析:解:(1),由已知得 3分
當(dāng)時(shí),此時(shí)在單調(diào)遞減,在單調(diào)遞增 5分
A. ,,在的切線方程為,即 8分
當(dāng)時(shí),曲線不可能在直線的下方在恒成立,令,
當(dāng),,即在恒成立,所以當(dāng)時(shí),曲線不可能在直線的下方 13分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)的運(yùn)用,研究函數(shù)的單調(diào)性,以及函數(shù)的最值,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省合肥市高三第一次教學(xué)質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)在處取得極小值.
(1)若函數(shù)的極小值是,求;
(2)若函數(shù)的極小值不小于,問:是否存在實(shí)數(shù),使得函數(shù)在上單調(diào)遞減?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省、二中高三上學(xué)期期末聯(lián)考文科數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù),若對(duì)于任意,總存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)在處取得極小值.
(Ⅰ)若函數(shù)的極小值是,求;
(Ⅱ)若函數(shù)的極小值不小于,問:是否存在實(shí)數(shù)k,使得函數(shù)在上單調(diào)遞減.若存在,求出k的范圍;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com