數(shù)列{an}滿足是常數(shù)。

(Ⅰ)當(dāng)a2=-1時(shí),求a3的值;

(Ⅱ)數(shù)列{an}是否可能為等差數(shù)列?若可能,求出它的通項(xiàng)公式;若不可能,說明理由;

(Ⅲ)求的取值范圍,使得存在正整數(shù)m,當(dāng)nm時(shí)總有an<0.

解:(Ⅰ)由于a1=1,

              所以當(dāng)a2=-1時(shí),得,

              故

             從而

 (Ⅱ)數(shù)列{an}不可能為等差數(shù)列.證明如下:

             由a1=1,

        

             若存在,使{an}為等差數(shù)列,則a3-a2=a2-a1,即

             

             解得=3.

              于是

     這與{an}為等差數(shù)列矛盾,所以,對(duì)任意,{an}都不可能是等差數(shù)列.

(Ⅲ)記根據(jù)題意可知,b1<0且,即>2且N*),這時(shí)總存在N*,滿足:當(dāng)nn0時(shí),bn>0;

當(dāng)nn0-1時(shí),bn<0.

    所以由an+1=bnana1=1>0可知,若n0為偶數(shù),則,從而當(dāng)nn0

時(shí)an<0;若n0為奇數(shù),則,從而當(dāng)nn0時(shí)an>0.

因此“存在mN*,當(dāng)nm時(shí)總有an<0”的充分必要條件是:no為偶數(shù),

no=2k(k=1,2, …),則滿足

                    

的取值范圍是4k2+2k(kN*).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x+2
(x≠-2,x∈R)
,數(shù)列{an}滿足a1=a(a≠-2,a∈R),an+1=f(an)(n∈N*).
(1)若數(shù)列{an}是常數(shù)列,求a的值;
(2)當(dāng)a1=2時(shí),記bn=
an-1
a n+1
(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求出通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=a,an+1=
2an
an+1
(n∈N*
).
(1)若數(shù)列{an}是無窮常數(shù)列,求a的值;
(2)當(dāng)a∈(0,1)時(shí),對(duì)數(shù)列{an}的任意相鄰三項(xiàng)an,an+1,an+2,證明:
an
(1-
a
2
n
)
2
+
a
2
n+1
(1-
a
3
n+1
)
2
+
a
3
n+2
(1-
a
4
n+2
)
2
1
(1-an+2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,如果對(duì)任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題,其中所有真命題的序號(hào)是
①④
①④

①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③等差數(shù)列是常數(shù)列是成為比等差數(shù)列的充分必要條件;
(文)④數(shù)列{an}滿足:an+1=an2+2an,a1=2,則此數(shù)列的通項(xiàng)為an=32n-1-1,且{an}不是比等差數(shù)列;
(理)④數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*)
,則此數(shù)列的通項(xiàng)為an=
n•3n
3n-1
,且{an}不是比等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x-2
x+1
(x≠-1,x∈R)
,數(shù)列{an}滿足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*)
(1)若數(shù)列{an}是常數(shù)列,求a的值;
(2)當(dāng)a1=4時(shí),記bn=
an-2
an-1
(n∈N*)
,證明數(shù)列{bn}是等比數(shù)列,并求
lim
n→∞
an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=
4an-2
an+1
,其中n∈N,首項(xiàng)為a0
(Ⅰ)若數(shù)列{an}是一個(gè)無窮的常數(shù)列,試求a0的值;
(Ⅱ)若a0=4,試求滿足不等式an
146
65
的自然數(shù)n的集合;
(Ⅲ)若存在a0,使數(shù)列{an}滿足:對(duì)任意正整數(shù)n,均有an<an+1,試求a0的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案