【題目】如圖所示,使用紙板可以折疊粘貼制作一個(gè)形狀為正六棱柱形狀的花型鎖盒蓋的紙盒.
(1)求該紙盒的容積;
(2)如果有一張長為60cm,寬為40cm的矩形紙板,則利用這張紙板最多可以制作多少個(gè)這樣的紙盒(紙盒必須用一張紙板制成).
【答案】
(1)解:由已知可得:正六棱柱形狀的花型鎖盒蓋的紙盒底面棱長為2cm,高為3cm;
故紙盒的容積V=6× ×22×3=18 cm3
(2)解:由已知可得:制作一個(gè)紙盒,需要一張長2×5+0.5=10.5cm,寬3+3+3=9cm的矩形紙,
一張長為60cm,寬為40cm的矩形紙板最多可以制作23個(gè)這樣的紙盒,
如下圖所示:
【解析】(1)由已知可得:正六棱柱形狀的花型鎖盒蓋的紙盒底面棱長為2cm,高為3cm; 進(jìn)而可得該紙盒的容積;(2)制作一個(gè)紙盒,需要一張長2×5+0.5=10.5cm,寬3+3+3=9cm的矩形紙,進(jìn)而可得制作方案.
【考點(diǎn)精析】通過靈活運(yùn)用由三視圖求面積、體積,掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,過橢圓C上一點(diǎn)P(2,1)作x軸的垂線,垂足為Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)Q的直線l交橢圓C于點(diǎn)A,B,且3+=,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1﹣an=2,等比數(shù)列{bn}滿足b1=a1 , b4=a4+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:三棱錐P﹣ABC中,PA⊥底面ABC,若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為 .若M是BC的中點(diǎn),求:
(1)三棱錐P﹣ABC的體積;
(2)異面直線PM與AC所成角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結(jié)論正確的是(請(qǐng)將你認(rèn)為正確的序號(hào)都填上)
·(1)f(x)是R上的單調(diào)遞減函數(shù);
·(2)對(duì)于任意x∈R,f(x)+x>0恒成立;
·(3)對(duì)于任意a∈R,關(guān)于x的方程f(x)=a都有解;
·(4)f(x)存在反函數(shù)f﹣1(x),且對(duì)于任意x∈R,總有f(x)=f﹣1(x)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項(xiàng)和Sn , 且滿足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn< ;
(3)證明:對(duì)任意給定的m∈(0, ),均存在n0∈N+ , 使得當(dāng)n≥n0時(shí),(2)中的Tn>m恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共13分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直。
EF//AC,AB=,CE=EF=1
(Ⅰ)求證:AF//平面BDE;
(Ⅱ)求證:CF⊥平面BDF;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,且,,平面底面,為的中點(diǎn), 是棱的中點(diǎn), ,.
(1)求證:平面BDM; (2)D到面PBC距離;
(3)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com