等差數(shù)列{an}中,a3+a5=24,a2=3,則a6=
21
21
分析:利用等差數(shù)列的通項(xiàng)公式表示已知條件,可求公差d及首項(xiàng)a1,再代入等差數(shù)列的通項(xiàng)中可求
解答:解:∵a3+a5=24,a2=3
2a1+6d=24
a1+d=3

解方程可求,a1=-
3
2
,d=
9
2

∴a6=a1+5d=-
3
2
+
45
2
=21.
故答案為:21
點(diǎn)評:本題主要考查了等差數(shù)列的通項(xiàng)公式的簡單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊答案