把平面上的一切單位向量歸結(jié)到共同的起點,那么這些向量的終點所構(gòu)成的圖形是____________
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

出于應(yīng)用方便和數(shù)學(xué)交流的需要,我們教材定義向量的坐標(biāo)如下:取
e1
e2
為直角坐標(biāo)第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數(shù)λ,μ,使得
a
=λ
e1
e2
,我們就把實數(shù)對(λ,μ)稱作向量
a
的坐標(biāo).并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.現(xiàn)在我們用
i
j
表示斜坐標(biāo)系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
,
j
>=
π
3

(1)請你模仿直角坐標(biāo)系xOy中向量坐標(biāo)的定義方式,用向量
i
j
做基底向量定義斜坐標(biāo)系x‘Oy’平面上的任意一個向量
a
的坐標(biāo);
(2)在(1)的基礎(chǔ)上研究斜坐標(biāo)系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

出于應(yīng)用方便和數(shù)學(xué)交流的需要,我們教材定義向量的坐標(biāo)如下:取數(shù)學(xué)公式數(shù)學(xué)公式為直角坐標(biāo)第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量數(shù)學(xué)公式,則存在唯一的一對實數(shù)λ,μ,使得數(shù)學(xué)公式=數(shù)學(xué)公式數(shù)學(xué)公式,我們就把實數(shù)對(λ,μ)稱作向量數(shù)學(xué)公式的坐標(biāo).并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.現(xiàn)在我們用數(shù)學(xué)公式數(shù)學(xué)公式表示斜坐標(biāo)系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<數(shù)學(xué)公式,數(shù)學(xué)公式>=數(shù)學(xué)公式
(1)請你模仿直角坐標(biāo)系xOy中向量坐標(biāo)的定義方式,用向量數(shù)學(xué)公式數(shù)學(xué)公式做基底向量定義斜坐標(biāo)系x‘Oy’平面上的任意一個向量數(shù)學(xué)公式的坐標(biāo);
(2)在(1)的基礎(chǔ)上研究斜坐標(biāo)系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

出于應(yīng)用方便和數(shù)學(xué)交流的需要,我們教材定義向量的坐標(biāo)如下:取
e1
e2
為直角坐標(biāo)第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數(shù)λ,μ,使得
a
=λ
e1
e2
,我們就把實數(shù)對(λ,μ)稱作向量
a
的坐標(biāo).并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.現(xiàn)在我們用
i
j
表示斜坐標(biāo)系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
,
j
>=
π
3

(1)請你模仿直角坐標(biāo)系xOy中向量坐標(biāo)的定義方式,用向量
i
j
做基底向量定義斜坐標(biāo)系x‘Oy’平面上的任意一個向量
a
的坐標(biāo);
(2)在(1)的基礎(chǔ)上研究斜坐標(biāo)系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)把平面上一切單位向量的始點放在同一點,那么這些向量的終點所構(gòu)成的圖形是什么?

(2)把平行于某一直線的一切單位向量歸結(jié)到共同的始點,則終點所構(gòu)成的圖形又是什么?

(3)有兩個長度相等的向量,在什么情況下,這兩個向量一定相等?

查看答案和解析>>

同步練習(xí)冊答案