函數(shù)y=log
13
(x2-2x-8)
的單調(diào)遞減區(qū)間為
(4,+∞)
(4,+∞)
分析:先求出函數(shù)y=log
1
3
(x2-2x-8)的定義域,再由拋物線t=x2-2x-8開口向上,對(duì)稱軸方程為x=1,由復(fù)合函數(shù)的單調(diào)性的性質(zhì)求函數(shù)y=log
1
3
(x2-2x-8)
的單調(diào)遞減區(qū)間.
解答:解:∵函數(shù)y=log
1
3
(x2-2x-8)

∴x2-2x-8>0,
解得x<2,或x>4.
∵拋物線t=x2-2x-8開口向上,對(duì)稱軸方程為x=1,
∴由復(fù)合函數(shù)的單調(diào)性的性質(zhì),知:
函數(shù)y=log
1
3
(x2-2x-8)
的單調(diào)遞減區(qū)間是(4,+∞).
故答案為:(4.+∞)
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的單調(diào)減區(qū)間,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)函數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=log
13
(x+m)
的圖象不經(jīng)過第三象限,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
13
(-x2+4x+12)
的單調(diào)遞減區(qū)間是
(-2,2)
(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鐘祥市模擬)函數(shù)y=
log
1
3
(2-x)
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=log
1
3
(x2-3x)
的單調(diào)區(qū)間.
(2)已知函數(shù)f(x)=
x2+4x,  x≥0
4x-x2,  x<0
,若f(2-a2)>f(a),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河北區(qū)一模)函數(shù)y=
log
1
3
(2x-3)
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

同步練習(xí)冊(cè)答案