【題目】如圖,在四棱錐中,底面是菱形,,是邊的中點(diǎn).平面平面,,.線段上的點(diǎn)滿足.
(1)證明:面;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析 (2)
【解析】
(1)連接交于,連接,根據(jù)相似三角形和比例關(guān)系,證得,再利用線面平行的判定定理,即可證得平面;
(2)以為坐標(biāo)原點(diǎn),分別為軸建立空間直角坐標(biāo)系,得到向量和平面的法向量,利用向量的夾角公式,即可求解.
(1)證明:連接交于,連接,
因?yàn)?/span>是菱形,且是的中點(diǎn),所以,且,
又由已知,于是,所以,
又平面,平面,所以平面.
(2)作的中點(diǎn),連接,則,知在平面內(nèi).
又由題知,,于是,
因?yàn)槠矫?/span>平面,平面平面,平面,
所以平面,故,,
在菱形中,,所以,
以為坐標(biāo)原點(diǎn),分別為軸建立空間直角坐標(biāo)系,不妨設(shè),
因?yàn)?/span>,,
所以為正三角形,,
于是,,,,
所以,.
由,且,可得,故,
由,知平面,
所以是平面的一個法向量,
則,
故直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的各條棱長均相等, 為的中點(diǎn), 分別是線段和線段上的動點(diǎn)(含端點(diǎn)),且滿足.當(dāng)運(yùn)動時(shí),下列結(jié)論中不正確的是( )
A. 平面平面 B. 三棱錐的體積為定值
C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|2x+4|+|x-3|.
(1)解關(guān)于x的不等式f(x)<8;
(2)對于正實(shí)數(shù)a,b,函數(shù)g(x)=f(x)-3a-4b只有一個零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn)是線段的中點(diǎn),直線與軸交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3月底,我國新冠肺炎疫情得到有效防控,但海外確診病例卻持續(xù)暴增,防疫物資供不應(yīng)求,某醫(yī)療器械廠開足馬力,日夜生產(chǎn)防疫所需物品.已知該廠有兩條不同生產(chǎn)線和生產(chǎn)同一種產(chǎn)品各10萬件,為保證質(zhì)量,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如下所示:
該產(chǎn)品的質(zhì)量評價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為合格.
(1)從等級為優(yōu)秀的樣本中隨機(jī)抽取兩件,求兩件均由生產(chǎn)線生產(chǎn)的概率;
(2)請完成下面質(zhì)量等級與生產(chǎn)線產(chǎn)品列聯(lián)表,并判斷能不能在誤差不超過0.05的情況下,認(rèn)為產(chǎn)品等級是否達(dá)到良好以上與生產(chǎn)產(chǎn)品的生產(chǎn)線有關(guān).
生產(chǎn)線的產(chǎn)品 | 生產(chǎn)線的產(chǎn)品 | 合計(jì) | |
良好以上 | |||
合格 | |||
合計(jì) |
附:
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年,山東省高考將全面實(shí)行“選”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對物理學(xué)科的喜好程度,某高中從高一年級學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計(jì)顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.
(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;
(2)為了了解學(xué)生對選科的認(rèn)識,年級決定召開學(xué)生座談會.現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()經(jīng)過點(diǎn),離心率為,,分別為橢圓的左、右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)()在橢圓C上,求證;直線與直線關(guān)于直線l:對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com