長方體
的各頂點(diǎn)都在球
的球面上,其中
.
兩點(diǎn)的球面距離記為
,
兩點(diǎn)的球面距離記為
,則
的值為
.
正方體的外接球中的球面距離問題,特殊化注意球心為長方體的中心,可求得體對角線
,球心
O和
A,
B構(gòu)成的三角形為等腰三角形且
,球心
O和
A,
D1構(gòu)成的三角形為等腰三角形且
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
右圖為一簡單組合體,其底面ABCD為正方形,
平面
,
,且
="2" .
(1)答題卡指定的方框內(nèi)已給出了該幾何體的俯視圖,請?jiān)诜娇?br />內(nèi)畫出該幾何體的正(主)視圖和側(cè)(左)視圖;
(2)求四棱錐B-CEPD的體積;
(3)求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在直三棱柱
中,
∠
ACB=90°,
M是
的中點(diǎn),
N是
的中點(diǎn)。
(1)求證:
MN∥平面
;
(2)求點(diǎn)
到平面
BMC的距離;
(3)求二面角
1的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)如圖,已知平行四邊形
和矩形
所在的平面互相垂直,
,
是線段
的中點(diǎn).
(1)求證:
;(2)求二面角
的大;
(3)設(shè)點(diǎn)
為一動點(diǎn),若點(diǎn)
從
出發(fā),沿棱按照
的路線運(yùn)動到點(diǎn)
,求這一過程中形成的三棱錐
的體積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分
)
如圖,已知正三棱柱
的底面邊長是
,
、E是
、BC的中點(diǎn),AE=DE
(1)求此正三棱柱的側(cè)棱長;
(2)求正三棱柱
表面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分,第(1)小題6分,第(2)小題8分)
四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60
,在四邊形ABCD中,∠ADC=∠DAB=90
,AB=4,CD=1,AD=2.
(1)求四棱錐P-ABCD的體積;
(2)求異面直線PA與BC所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖三棱柱
中,側(cè)棱
與底面成
角,
⊥底面
于
,
⊥側(cè)面
于
,且
⊥
,
,
,
則頂點(diǎn)
到棱
的距離是__________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分,(Ⅰ)小問6分,(Ⅱ)小問6分.)
如圖(20)圖,
為平面,
AB=5,
A,
B在棱
l上的射影分別為
A′,
B′,
AA′=3,
BB′=2.若二面角
的大小為
,求:
(Ⅰ)點(diǎn)
B到平面
的距離;
(Ⅱ)異面直線
l與
AB所成的角(用反三角函數(shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是三個不重合的平面,
是不重合的直線,給出下列命題:
①若
;②若
;③若
則
;④若
內(nèi)的射影互相垂直,則
,其中錯誤命題有 ( )
查看答案和解析>>