如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程.
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
【解析】(1)由題設(shè)知,圓心C是直線y=2x-4和y=x-1的交點(diǎn),解得點(diǎn)C(3,2),于是切線的斜率必存在.設(shè)過A(0,3)的圓C的切線方程為y=kx+3,
由題意得,=1,解得k=0或-,
故所求切線方程為y=3或3x+4y-12=0.
(2)因?yàn)閳A心在直線y=2x-4上,所以圓C的方程為
(x-a)2+[y-2(a-2)]2=1.
設(shè)點(diǎn)M(x,y),因?yàn)镸A=2MO,
所以=2,
化簡得x2+y2+2y-3=0,即x2+(y+1)2=4,
所以點(diǎn)M在以D(0,-1)為圓心,2為半徑的圓上.
由題意知,點(diǎn)M(x,y)在圓C上,所以圓C與圓D有公共點(diǎn),
則|2-1|≤CD≤2+1,
即1≤≤3.
由5a2-12a+8≥0,得a∈R;
由5a2-12a≤0,得0≤a≤.
所以圓心C的橫坐標(biāo)a的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com