(本小題15分)已知橢圓的右焦點恰好是拋物線的焦點
是橢圓的右頂點.過點的直線交拋物線兩點,滿足,
其中是坐標(biāo)原點.
(1)求橢圓的方程;
(2)過橢圓的左頂點軸平行線,過點軸平行線,直線
相交于點.若是以為一條腰的等腰三角形,求直線的方程.
(本小題15分)
(1),,設(shè)直線代入中,
整理得。設(shè),則,
,,由   
, 解得 (舍),得
所以橢圓的方程為.                    (7分)
(2)橢圓的左頂點,所以點. 易證三點共線.
(I)當(dāng)為等腰的底邊時,由于,是線段的中點,
,所以,即直線的方程為;       (11分)
(II) 當(dāng)為等腰的底邊時,  又,
解得,  ,
所以直線的方程為,即;      (15分)
綜上所述,當(dāng)為等腰三角形時,直線的方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線的右焦點F,且交橢圓CAB兩點,點AF,B在直線上的射影依次為點D,K,E.
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)連接AE,BD,證明:當(dāng)m變化時,直線AE、BD相交于一定點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓和圓,直線與圓相切于點;圓的圓心在射線上,圓過原點,且被直線截得的弦長為
(Ⅰ)求直線的方程;
(Ⅱ)求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓過點,長軸長為,過點C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點A、B.
(1)求橢圓的方程;
(2)若線段AB中點的橫坐標(biāo)是求直線l的斜率;
(3)在x軸上是否存在點M,使是與k無關(guān)的常數(shù)?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)
在直角坐標(biāo)系中,點M到點的距離之和是4,點M的軌跡是C與x軸的負半軸交于點A,不過點A的直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)當(dāng)時,求k與b的關(guān)系,并證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓,是橢圓上關(guān)于原點對稱的兩點,是橢圓上任意一點,且直線、的斜率分別為,若,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的兩個焦點和短軸兩個頂點是有一個內(nèi)角為的菱形的四個頂點,則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點P在橢圓上,焦點為F1、F2,且∠F1PF2=30°,求△F1PF2的面積.(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為橢圓上任一點(不是長軸頂點),過點的切線與過長軸頂點與長軸垂直的直線相交于點,求證以線段為直徑的圓過這個橢圓的兩個焦點

查看答案和解析>>

同步練習(xí)冊答案