設(shè)f(x)定義如下面數(shù)表,{xn}滿足x=5,且對(duì)任意自然數(shù)n均有xn+1=f(xn),則x2007的值為   
x12345
f(x)41352
【答案】分析:利用數(shù)表尋找數(shù)列{xn}的取值關(guān)系.由數(shù)值的變化得到取值的周期為4,然后利用周期進(jìn)行求值即可.
解答:解:由圖表可知f(1)=4,f(2)=1,f(3)=3,f(4)=5,f(5)=2,
則x1=f(x)=f(5)=2,
x2=f(x1)=f(2)=1,
x3=f(x2)=f(1)=4,
x4=f(x3)=f(4)=5,
x5=f(x4)=f(5)=2,
所以xn+1=f(xn)的取值具有周期性,周期為4.
所以x2007=x2004+3=x3=4.
故答案為:4.
點(diǎn)評(píng):本題主要考查周期性的應(yīng)用,利用條件根據(jù)數(shù)值的變化得到取值的周期為4,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)定義如下面數(shù)表,{xn}滿足x0=5,且對(duì)任意自然數(shù)n均有xn+1=f(xn),則x2007的值為
4
4

x 1 2 3 4 5 f(x) 4 1 3 5 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)定義如下面數(shù)表,數(shù)列{xn}滿足x0=5,且對(duì)任意自然數(shù)n均有xn+1=f(xn),則x2014的值為
 

x 1 2 3 4 5
f(x) 4 1 3 5 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)f(x)定義如下面數(shù)表,{xn}滿足x0=5,且對(duì)任意自然數(shù)n均有xn+1=f(xn),則x2007的值為_(kāi)_______.
x12345
f(x)41352

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)定義如下面數(shù)表,{xn}滿足x0=5,且對(duì)任意自然數(shù)n均有xn+1=f(xn),則x2007的值為_(kāi)_____.
x 1 2 3 4 5
f(x) 4 1 3 5 2

查看答案和解析>>

同步練習(xí)冊(cè)答案