復(fù)數(shù)z=a+bi(a,b∈R)的虛部記作Im(z),則Im=( )
A.
B.
C.
D.
【答案】分析:首先進(jìn)行復(fù)數(shù)的除法運(yùn)算,分子和分母同乘以分母的共軛復(fù)數(shù),整理出復(fù)數(shù)的代數(shù)形式的標(biāo)準(zhǔn)形式,根據(jù)題目中定義的復(fù)數(shù)的虛部,得到結(jié)果.
解答:解:∵=
∵復(fù)數(shù)z=a+bi(a,b∈R)的虛部記作Im(z),
Im=-
故選D.
點(diǎn)評(píng):本題考查復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念,是一個(gè)新定義問題,在解題的過程中注意新定義的虛部的概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知復(fù)數(shù)z=a+bi(a,b∈R),z1=1+i,z2=3-i,且z=z1•z2,則點(diǎn)P(a,b)在( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、下列四個(gè)結(jié)論中正確的個(gè)數(shù)為( 。
①命題“若x2<1,則-1<x<1”的逆否命題是“若x>1或x<-1,則x2>1”
②已知p:?x∈R,sinx≤1,q:若a<b,則am2<bm2,則p∧q為真命題
③命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
④復(fù)數(shù)z=a+bi(a,b∈R)表示純虛數(shù)的充要條件是a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=a+bi(a,b∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為Z(a,b),若|z|=1,則點(diǎn)Z的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)是純虛數(shù)”的(  )條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=a+bi(a,b∈R),若
z
1+i
=2-i
成立,則點(diǎn)P(a,b)在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案