【題目】已知命題p:“x∈[1,2], x2-lnx-a≥0”與命題q:“x∈R,x2+2ax-8-6a=0”都是真命題,求實數(shù)a的取值范圍.
【答案】 (-∞,-4]∪[-2,]
【解析】
根據(jù)題意,命題p,利用恒成立問題方法轉化,求出a的取值范圍;
命題q,由一元二次方程的根的情況分析可得a的取值范圍,根據(jù)p、q都是真命題,將兩次求出的a的范圍求交集即可.
命題p:a≤x2-lnx在x∈[1,2]上恒成立,令f(x)=x2-lnx,f ′(x)=x-= ,
當1<x<2時,f′(x)>0,∴f(x)min=f(1)=.∴a≤. 即:當a≤時,p是真命題.,
命題q:Δ=4a2-4(-8-6a)≥0,∴a≥-2或a≤-4.即當 a≥-2或a≤-4時,q是真命題,
綜上,a的取值范圍為(-∞,-4]∪[-2,].
科目:高中數(shù)學 來源: 題型:
【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為__________.
【答案】或
【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當a<0時,則平行AC直線即可故a=-2,當a>0時,則直線平行AB即可,故a=1
點睛:線性規(guī)劃為?碱}型,解決此題務必要理解最優(yōu)解個數(shù)為無數(shù)個時的條件是什么,然后根據(jù)幾何關系求解即可
【題型】填空題
【結束】
16
【題目】《數(shù)書九章》三斜求積術:“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實,一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , , 分別為對應的大斜,中斜,小斜上的高;則 .若在中, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=0,an+1=an+6n+3,數(shù)列{bn}滿足bn=n,則數(shù)列{bn}的最大項為第_____項
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是棱長為2的正方形,E為AD的中點,以CE為折痕把△DEC折起,使點D到達點P的位置,且點P的射影O落在線段AC上.
(1)求;
(2)求幾何體P﹣ABCE的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)為(α為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為;
(1)寫出曲線C的普通方程和直線l的參數(shù)方程;
(2)設點P(m,0),若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:經(jīng)過點,其焦點為F,M為拋物線上除了原點外的任一點,過M的直線l與x軸、y軸分別交于A,B兩點.
Ⅰ求拋物線C的方程以及焦點坐標;
Ⅱ若與的面積相等,證明直線l與拋物線C相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校的名高三學生參加了天一大聯(lián)考,為了分析此次聯(lián)考數(shù)學學科的情況,現(xiàn)隨機從中抽取名學生的數(shù)學成績(滿分:分),并繪制成如圖所示的莖葉圖.將成績低于分的稱為“不及格”,不低于分的稱為“優(yōu)秀”,其余的稱為“良好”.根據(jù)樣本的數(shù)字特征估計總體的情況.
(1)估算此次聯(lián)考該校高三學生的數(shù)學學科的平均成績.
(2)估算此次聯(lián)考該校高三學生數(shù)學成績“不及格”和“優(yōu)秀”的人數(shù)各是多少.
(3)在國家扶貧政策的倡導下,該地教育部門提出了教育扶貧活動,要求對此次數(shù)學成績“不及格”的學生分兩期進行學業(yè)輔導:一期由優(yōu)秀學生進行一對一幫扶輔導,二期由老師進行集中輔導.根據(jù)實踐總結,優(yōu)秀學生進行一對一輔導的轉化率為;老師集中輔導的轉化率為,試估算經(jīng)過兩期輔導后,該校高三學生中數(shù)學成績仍然不及格的人數(shù).
注:轉化率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是以為焦點的拋物線,是以直線與的漸近線,以為一個焦點的雙曲線.
(1)求雙曲線的標準方程;
(2)若與在第一象限有兩個公共點,求的取值范圍,并求的最大值;
(3)是否存在正數(shù),使得此時的重心恰好在雙曲線的漸近線上?如果存在,求出的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車零件加工廠為迎接國慶大促銷活動預估國慶七天銷售量,該廠工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示,將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.
(1)根據(jù)頻率分布直方圖估計該廠的日平均銷售量;(每組以中點值為代表)
(2)求未來天內,連續(xù)天日銷售量不低于噸,另一天日銷售量低于噸的概率;
(3)用表示未來天內日銷售量不低于噸的天數(shù),求隨機變量的分布列、數(shù)學期望與方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com