若數(shù)列{an}滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù)),則稱{an}為“等方比數(shù)列”.甲:數(shù)列{an}是等方比數(shù)列;乙:數(shù)列{an}是等比數(shù)列,則( 。
A、甲是乙的充分條件但不是必要條件
B、甲是乙的必要條件但不是充分條件
C、甲是乙的充要條件
D、甲既不是乙的充分條件也不是乙的必要條件
分析:由題意可知,乙?甲,但是
a
2
n+1
a
2
n+1
=q2?
an+1
an
=±q
,即甲成立,乙不一定成立,所以甲是乙的必要條件但不是充分條件.
解答:解:由等比數(shù)列的定義,若乙:{an}是等比數(shù)列,公比為q,即
an+1
an
=q?
a
2
n+1
a
2
n+1
=q2
則甲命題成立;反之,若甲:數(shù)列{an}是等方比數(shù)列,即
a
2
n+1
a
2
n+1
=q2?
an+1
an
=±q

即公比不一定為q,則命題乙不成立,
故選B
點(diǎn)評(píng):本題是易錯(cuò)題.由
a
2
n+1
a
2
n
=p?
an+1
an
p
,得到的是兩個(gè)等比數(shù)列,而命題乙是指一個(gè)等比數(shù)列,忽略等比數(shù)列的確定性,容易錯(cuò)選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于
1
m
,那么正數(shù)m的最小取值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案