已知動點M到點F(1,0)的距離比它到y(tǒng)軸的距離大1個單位長度.
(1)求點M的軌跡C的方程;
(2)過點F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點A、B和M、N,設(shè)線段AB、MN的中點分別為P、Q,求證:直線PQ恒過一個定點.
【答案】分析:(1)設(shè)動點M的坐標(biāo)為(x,y),根據(jù)動點M到點F(1,0)的距離比它到y(tǒng)軸的距離大1個單位長度,建立方程,化簡可得點M的軌跡C的方程;
(2)設(shè)A,B兩點坐標(biāo)分別為(x1,y1),(x2,y2),則點P的坐標(biāo)為(, ),可設(shè)直線l1的方程為y=k(x-1)(k≠0),與拋物線方程聯(lián)立,利用韋達(dá)定理可求點P的坐標(biāo)為(1+),同理可得點的坐標(biāo)為(1+2k2,-2k),進(jìn)而可確定直線PQ的方程,即可得到結(jié)論.
解答:(1)解:設(shè)動點M的坐標(biāo)為(x,y),
由題意,∵動點M到點F(1,0)的距離比它到y(tǒng)軸的距離大1個單位長度

化簡得y2=4x,
所以點M的軌跡C的方程為y2=4x.
(2)證明:設(shè)A,B兩點坐標(biāo)分別為(x1,y1),(x2,y2),則點P的坐標(biāo)為(, ).
由題意可設(shè)直線l1的方程為y=k(x-1)(k≠0),
得k2x2-(2k2+4)x+k2=0.
△=(2k2+4)2-4k4=16k2+16>0,x1+x2=2+,y1+y2=k(x1+x2-2)=
所以點P的坐標(biāo)為(1+).
由題知,直線l2的斜率為-,同理可得點的坐標(biāo)為(1+2k2,-2k).
當(dāng)k≠±1時,有1+≠1+2k2,此時直線PQ的斜率kPQ=
所以,直線PQ的方程為y+2k= (x-1-2k2),
整理得yk2+(x-3)k-y=0,于是,直線PQ恒過定點E(3,0);
當(dāng)k=±1時,直線PQ的方程為x=3,也過點E(3,0).
綜上所述,直線PQ恒過定點E(3,0).
點評:本題考查圓錐曲線和直線的位置關(guān)系和綜合應(yīng)用,具有一定的難度,解題的關(guān)鍵是直線與拋物線的聯(lián)立,確定直線PQ的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知動點M到點F(1,0)的距離,等于它到直線x=-1的距離.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過點F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點A,B和M,N.設(shè)線段AB,MN的中點分別為P,Q,求證:直線PQ恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求△FPQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M到點F(1,0)的距離比它到y(tǒng)軸的距離大1個單位長度.
(1)求點M的軌跡C的方程;
(2)過點F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點A、B和M、N,設(shè)線段AB、MN的中點分別為P、Q,求證:直線PQ恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省太原市高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

((本小題滿分12分)

    已知動點M到點F(1,0)的距離比它到軸的距離大1個單位長度。

   (Ⅰ)求點M的軌跡C的方程;

   (Ⅱ)過點F任意作互相垂直的兩條直線,分別交曲線C于點A、B和M、N,設(shè)線段AB、MN的中點分別為P、Q,求證:直線PQ恒過一個定點。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河南省濮陽市高三摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知動點M到點F(1,0)的距離,等于它到直線x=-1的距離.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過點F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點A,B和M,N.設(shè)線段AB,MN的中點分別為P,Q,求證:直線PQ恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求△FPQ面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案