分析:先求函數(shù)的定義域,然后分解函數(shù):令t=x
2-2x,則y=
logt,而函數(shù)y=
logt在定義域上單調(diào)遞減,t=x
2-2x在(2,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減,根據(jù)復合函數(shù)的單調(diào)性可知函數(shù)
y=log(x2-2x)可求
解答:解:由題意可得函數(shù)的定義域為:(2,+∞)∪(-∞,0)
令t=x
2-2x,則y=
logt因為函數(shù)y=
logt在定義域上單調(diào)遞減
t=x
2-2x在(2,+∞)單調(diào)遞增,在(-∞,0)單調(diào)遞減
根據(jù)復合函數(shù)的單調(diào)性可知函數(shù)
y=log(x2-2x)的單調(diào)遞減區(qū)間為:(2,+∞)
故答案為:(2,+∞)
點評:本題主要考查了由對數(shù)函數(shù)及二次函數(shù)復合而成的復合函數(shù)的單調(diào)區(qū)間的求解,解題的關鍵是根據(jù)復合函數(shù)的單調(diào)性的求解法則的應用,解題中容易漏掉對函數(shù)的定義域的考慮,這是解題中容易出現(xiàn)問題的地方.