13.已知函數(shù)f(x)的圖象在點(x0,f(x0))處的切線方程l:y=g(x),若函數(shù)f(x)滿足?x∈I(其中I為函數(shù)f(x)的定義域),當(dāng)x≠x0時,[f(x)-g(x)](x-x0)>0恒成立,則稱x0為函數(shù)f(x)的“穿越點”.已知函數(shù)f(x)=lnx-$\frac{a}{2}$x2-$\frac{x}{2}$在(0,e]上存在一個“穿越點”,則a的取值范圍為( 。
A.[$\frac{1}{{e}^{2}}$,+∞)B.(-1,$\frac{1}{{e}^{2}}$]C.[-$\frac{1}{{e}^{2}}$,1)D.(-∞,-$\frac{1}{{e}^{2}}$]

分析 利用二階導(dǎo)函數(shù)為0,求解:f″(x)=-$\frac{1}{{x}^{2}}$-a=0,顯然只有當(dāng)a<0時有解,其解就為“穿越點”橫坐標,即可得出結(jié)論.

解答 解:根據(jù)若函數(shù)f(x)滿足?x∈I(其中I為函數(shù)f(x)的定義域),當(dāng)x≠x0時,[f(x)-g(x)](x-x0)>0恒成立,
利用二階導(dǎo)函數(shù)為0,求解:f″(x)=-$\frac{1}{{x}^{2}}$-a=0,顯然只有當(dāng)a<0時有解,其解就為“穿越點”橫坐標,
故x=$\sqrt{\frac{1}{-a}}$,由題意x=$\sqrt{\frac{1}{-a}}$∈(0,e],故a≤-$\frac{1}{{e}^{2}}$.
故選:D

點評 本題主要考查新定義,判斷函數(shù)的穿越點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上是減函數(shù)( 。
A.y=$\frac{1}{x}$B.y=x2C.y=($\frac{1}{2}$)xD.y=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.甲、乙兩位同學(xué)在5次考試中的數(shù)學(xué)成績用莖葉圖表示如圖,中間一列的數(shù)字表示數(shù)學(xué)成績的十位數(shù)字,兩邊的數(shù)字表示數(shù)學(xué)成績的個位數(shù)字,若甲、乙兩人的平均成績分別是$\overline{{x}_{1}}$,$\overline{{x}_{2}}$,則下列說法正確的是(  )
A.$\overline{{x}_{1}}<\overline{{x}_{2}}$,甲比乙成績穩(wěn)定B.$\overline{{x}_{1}}<\overline{{x}_{2}}$,乙比甲成績穩(wěn)定
C.$\overline{{x}_{1}}>\overline{{x}_{2}}$,甲比乙成績穩(wěn)定D.$\overline{{x}_{1}}>\overline{{x}_{2}}$,乙比甲成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(0)=0,對于任意x∈R都有f(x)≥x,且f(-$\frac{1}{2}$+x)=f(-$\frac{1}{2}$-x),令g(x)=f(x)-|λx-1|(λ>0).
(1)求函數(shù)f(x)的表達式;
(2)函數(shù)g(x)在區(qū)間(0,1)上有兩個零點,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(cosx,-$\frac{\sqrt{3}}{2}$),$\overrightarrow$=(sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(I)求f(x)的最小正周期:
(Ⅱ)若x∈(0,$\frac{π}{2}$),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若全集U=R,集合A={x|3≤x<7},B={x|2<x<10},則CUA∪B=R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+2$\overrightarrow$-2$\overrightarrow{c}$,$\overrightarrow{BC}$=3$\overrightarrow{a}$-3$\overrightarrow$+3$\overrightarrow{c}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$,則直線AD與BC(  )
A.平行B.相交C.重合D.平行或重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-2|x|
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并解不等式$f(|a|+\frac{3}{2})>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)二次函數(shù)f(x)=x2+ax+a.
(1)若方程f(x)-x=0的兩實根x1和x2滿足0<x1<x2<1.求實數(shù)a的取值范圍.
(2)求函數(shù)g(x)=af(x)-a2(x+1)-2x在區(qū)間[0,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案